factor_forest {latentFactoR} | R Documentation |
Estimate Number of Dimensions using Factor Forest
Description
Estimates the number of dimensions in data using the pre-trained Random Forest model from Goretzko and Buhner (2020, 2022). See examples to get started
Usage
factor_forest(
data,
sample_size,
maximum_factors = 8,
PA_correlation = c("cor", "poly", "tet")
)
Arguments
data |
Matrix or data frame. Either a dataset with all numeric values (rows = cases, columns = variables) or a symmetric correlation matrix |
sample_size |
Numeric (length = 1).
If input into |
maximum_factors |
Numeric (length = 1).
Maximum number of factors to search over.
Defaults to |
PA_correlation |
Character (length = 1).
Type of correlation used in
|
Value
Returns a list containing:
dimensions |
Number of dimensions identified |
probabilities |
Probability that the number of dimensions is most likely |
Author(s)
# Authors of Factor Forest
David Goretzko and Markus Buhner
# Authors of {latentFactoR}
Alexander P. Christensen <alexpaulchristensen@gmail.com>,
Hudson Golino <hfg9s@virginia.edu>,
Luis Eduardo Garrido <luisgarrido@pucmm.edu>
References
Goretzko, D., & Buhner, M. (2022). Factor retention using machine learning with ordinal data. Applied Psychological Measurement, 01466216221089345.
Goretzko, D., & Buhner, M. (2020). One model to rule them all? Using machine learning algorithms to determine the number of factors in exploratory factor analysis. Psychological Methods, 25(6), 776-786.
Examples
# Generate factor data
two_factor <- simulate_factors(
factors = 2, # factors = 2
variables = 6, # variables per factor = 6
loadings = 0.55, # loadings between = 0.45 to 0.65
cross_loadings = 0.05, # cross-loadings N(0, 0.05)
correlations = 0.30, # correlation between factors = 0.30
sample_size = 1000 # number of cases = 1000
)
## Not run:
# Perform Factor Forest
factor_forest(two_factor$data)
## End(Not run)