add_wording_effects {latentFactoR} | R Documentation |
Adds Wording Effects to simulate_factors
Data
Description
Adds wording effects to simulated data from simulate_factors
.
See examples to get started
Usage
add_wording_effects(
lf_object,
method = c("acquiescence", "difficulty", "random_careless", "straight_line", "mixed"),
proportion_negative = 0.5,
proportion_negative_range = NULL,
proportion_biased_cases = 0.1,
proportion_biased_variables = 1,
proportion_biased_variables_range = NULL,
proportion_biased_person = 1,
proportion_biased_person_range = NULL
)
Arguments
lf_object |
Data object from |
method |
Character (length = 1). Method to generate wording effect to add to the data. Description of methods:
|
proportion_negative |
Numeric (length = 1 or |
proportion_negative_range |
Numeric (length = 2).
Range of proportion of variables that are randomly selected from
a uniform distribution. Accepts number of number of variables as well.
Defaults to |
proportion_biased_cases |
Numeric (length = 1).
Proportion of cases that should be biased with wording effects.
Also accepts number of cases to be biased. The first n number of cases,
up to the corresponding proportion, will be biased.
Defaults to |
proportion_biased_variables |
Numeric (length = 1 or |
proportion_biased_variables_range |
Numeric (length = 2).
Range of proportion of variables that should be biased with wording effects.
Values are drawn randomly from a uniform distribution.
Defaults to |
proportion_biased_person |
Numeric (length = 1 or |
proportion_biased_person_range |
Numeric (length = 2).
Range to randomly draw bias from a uniform distribution. Allows for random
person-specific bias to be obtained.
Defaults to |
Value
Returns a list containing:
data |
Biased data simulated data from the specified factor model |
unbiased_data |
The corresponding unbiased data prior to replacing values
to generate the (biased) |
biased_sample_size |
The number of cases that have biased data |
adjusted_results |
Bias-adjusted |
original_results |
Original |
Author(s)
Alexander P. Christensen <alexpaulchristensen@gmail.com>, Luis Eduardo Garrido <luisgarrido@pucmm.edu>
References
Garcia-Pardina, A., Abad, F. J., Christensen, A. P., Golino, H., & Garrido, L. E. (2022). Dimensionality assessment in the presence of wording effects: A network psychometric and factorial approach. PsyArXiv.
Garrido, L. E., Golino, H., Christensen, A. P., Martinez-Molina, A., Arias, V. B., Guerra-Pena, K., ... & Abad, F. J. (2022). A systematic evaluation of wording effects modeling under the exploratory structural equation modeling framework. PsyArXiv.
Examples
# Generate factor data
two_factor <- simulate_factors(
factors = 2, # factors = 2
variables = 6, # variables per factor = 6
loadings = 0.55, # loadings between = 0.45 to 0.65
cross_loadings = 0.05, # cross-loadings N(0, 0.05)
correlations = 0.30, # correlation between factors = 0.30
sample_size = 1000, # number of cases = 1000
variable_categories = 5 # 5-point Likert scale
)
# Add wording effects using acquiescence method
two_factor_acquiescence <- add_wording_effects(
lf_object = two_factor,
proportion_negative = 0.50,
proportion_biased_cases = 0.10,
method = "acquiescence"
)
# Add wording effects using difficulty method
two_factor_difficulty <- add_wording_effects(
lf_object = two_factor,
proportion_negative = 0.50,
proportion_biased_cases = 0.10,
method = "difficulty"
)
# Add wording effects using random careless method
two_factor_random_careless <- add_wording_effects(
lf_object = two_factor,
proportion_negative = 0.50,
proportion_biased_cases = 0.10,
method = "random_careless"
)
# Add wording effects using straight line method
two_factor_random_careless <- add_wording_effects(
lf_object = two_factor,
proportion_negative = 0.50,
proportion_biased_cases = 0.10,
method = "straight_line"
)
# Add wording effects using mixed method
two_factor_mixed <- add_wording_effects(
lf_object = two_factor,
proportion_negative = 0.50,
proportion_biased_cases = 0.10,
method = "mixed"
)
# Add wording effects using acquiescence and straight line method
two_factor_multiple <- add_wording_effects(
lf_object = two_factor,
proportion_negative = 0.50,
proportion_biased_cases = 0.10,
method = c("acquiescence", "straight_line")
)