EKC {latentFactoR} | R Documentation |
Estimate Number of Dimensions using Empirical Kaiser Criterion
Description
Estimates the number of dimensions in data using Empirical Kaiser Criterion (Braeken & Van Assen, 2017). See examples to get started
Usage
EKC(data, sample_size)
Arguments
data |
Matrix or data frame. Either a dataset with all numeric values (rows = cases, columns = variables) or a symmetric correlation matrix |
sample_size |
Numeric (length = 1).
If input into |
Value
Returns a list containing:
dimensions |
Number of dimensions identified |
eigenvalues |
Eigenvalues |
reference |
Reference values compared against eigenvalues |
Author(s)
Alexander P. Christensen <alexpaulchristensen@gmail.com>, Hudson Golino <hfg9s@virginia.edu>, Luis Eduardo Garrido <luisgarrido@pucmm.edu>
References
Braeken, J., & Van Assen, M. A. (2017). An empirical Kaiser criterion. Psychological Methods, 22(3), 450–466.
Examples
# Generate factor data
two_factor <- simulate_factors(
factors = 2, # factors = 2
variables = 6, # variables per factor = 6
loadings = 0.55, # loadings between = 0.45 to 0.65
cross_loadings = 0.05, # cross-loadings N(0, 0.05)
correlations = 0.30, # correlation between factors = 0.30
sample_size = 1000 # number of cases = 1000
)
# Perform Empirical Kaiser Criterion
EKC(two_factor$data)
[Package latentFactoR version 0.0.6 Index]