| estimate_params {latent2likert} | R Documentation |
Estimate Latent Parameters
Description
Estimates the location and scaling parameters of the latent variables from existing survey data.
Usage
estimate_params(data, n_levels, skew = 0)
Arguments
data |
survey data with columns representing individual items.
Apart from this, |
n_levels |
number of response categories, a vector or a number. |
skew |
marginal skewness of latent variables, defaults to 0. |
Details
The relationship between the continuous random variable X and the
discrete probability distribution p_k, for k = 1, \dots, K,
can be described by a system of non-linear equations:
p_{k} = F_{X}\left( \frac{x_{k - 1} - \xi}{\omega} \right)
- F_{X}\left( \frac{x_{k} - \xi}{\omega} \right)
\quad \text{for} \ k = 1, \dots, K
where:
F_{X}is the cumulative distribution function of
X,Kis the number of possible response categories,
x_{k}are the endpoints defining the boundaries of the response categories,
p_{k}is the probability of the
k-th response category,\xiis the location parameter of
X,\omegais the scaling parameter of
X.
The endpoints x_{k} are calculated by discretizing a
random variable Z
with mean 0 and standard deviation 1 that follows the same
distribution as X.
By solving the above system of non-linear equations iteratively,
we can find the parameters that best fit the observed discrete
probability distribution p_{k}.
The function estimate_params:
Computes the proportion table of the responses for each item.
Estimates the probabilities
p_{k}for each item.Computes the estimates of
\xiand\omegafor each item.Combines the estimated parameters for all items into a table.
Value
A table of estimated parameters for each latent variable.
See Also
discretize_density for details on calculating
the endpoints, and part_bfi for example of the survey data.
Examples
data(part_bfi)
vars <- c("A1", "A2", "A3", "A4", "A5")
estimate_params(data = part_bfi[, vars], n_levels = 6)