shap_var {lares} | R Documentation |
SHAP-based dependence plots for categorical/numerical features (PDP)
Description
Having a h2o_shap
object, plot a dependence plot for any
categorical or numerical feature.
Usage
shap_var(x, var, keep_outliers = FALSE)
Arguments
x |
|
var |
Variable name |
keep_outliers |
Boolean. Outliers detected with z-score and 3sd may be suppress or kept in your plot. Keep them? |
Value
ggplot2 objct with shap values plotted
See Also
Other SHAP:
h2o_shap()
Examples
## Not run:
# Train a h2o_automl model
model <- h2o_automl(dft, Survived,
max_models = 1, target = TRUE,
ignore = c("Ticket", "Cabin", "PassengerId"),
quiet = TRUE
)
# Calculate SHAP values
SHAP_values <- h2o_shap(model)
# Equivalent to:
# SHAP_values <- h2o_shap(
# model = model$model,
# test = model$datasets$test,
# scores = model$scores_test$scores)
# Check SHAP results
head(SHAP_values)
# You must have "ggbeeswarm" library to use this auxiliary function:
# Plot SHAP values (feature importance)
plot(SHAP_values)
# Plot some of the variables (categorical)
shap_var(SHAP_values, Pclass)
# Plot some of the variables (numerical)
shap_var(SHAP_values, Fare)
## End(Not run)
[Package lares version 5.2.8 Index]