mplot_roc {lares} | R Documentation |
ROC Curve Plot
Description
This function plots ROC Curves with AUC values with 95% confidence range. It also works for multi-categorical models.
Usage
mplot_roc(
tag,
score,
multis = NA,
sample = 1000,
model_name = NA,
subtitle = NA,
interval = 0.2,
squared = TRUE,
plotly = FALSE,
save = FALSE,
subdir = NA,
file_name = "viz_roc.png"
)
Arguments
tag |
Vector. Real known label. |
score |
Vector. Predicted value or model's result. |
multis |
Data.frame. Containing columns with each category probability or score (only used when more than 2 categories coexist). |
sample |
Integer. Number of samples to use for rendering plot. |
model_name |
Character. Model's name |
subtitle |
Character. Subtitle to show in plot |
interval |
Numeric. Interval for breaks in plot |
squared |
Boolean. Keep proportions? |
plotly |
Boolean. Use plotly for plot's output for an interactive plot |
save |
Boolean. Save output plot into working directory |
subdir |
Character. Sub directory on which you wish to save the plot |
file_name |
Character. File name as you wish to save the plot |
Value
Plot with ROC curve and AUC performance results.
See Also
Other ML Visualization:
mplot_conf()
,
mplot_cuts_error()
,
mplot_cuts()
,
mplot_density()
,
mplot_full()
,
mplot_gain()
,
mplot_importance()
,
mplot_lineal()
,
mplot_metrics()
,
mplot_response()
,
mplot_splits()
,
mplot_topcats()
Examples
Sys.unsetenv("LARES_FONT") # Temporal
data(dfr) # Results for AutoML Predictions
lapply(dfr[c(1, 2)], head)
# ROC Curve for Binomial Model
mplot_roc(dfr$class2$tag, dfr$class2$scores,
model_name = "Titanic Survived Model"
)
# ROC Curves for Multi-Categorical Model
mplot_roc(dfr$class3$tag, dfr$class3$score,
multis = subset(dfr$class3, select = -c(tag, score)),
squared = FALSE,
model_name = "Titanic Class Model"
)