lasso_vars {lares} | R Documentation |
Most Relevant Features Using Lasso Regression
Description
Use Lasso regression to identify the most relevant variables that
can predict/identify another variable. You might want to compare
with corr_var()
and/or x2y()
results to compliment
the analysis No need to standardize, center or scale your data.
Tidyverse friendly.
Usage
lasso_vars(
df,
variable,
ignore = NULL,
nlambdas = 100,
nfolds = 10,
top = 20,
quiet = FALSE,
seed = 123,
...
)
Arguments
df |
Dataframe. Any dataframe is valid as |
variable |
Variable. Dependent variable or response. |
ignore |
Character vector. Variables to exclude from study. |
nlambdas |
Integer. Number of lambdas to be used in a search. |
nfolds |
Integer. Number of folds for K-fold cross-validation (>= 2). |
top |
Integer. Plot top n results only. |
quiet |
Boolean. Keep quiet? Else, show messages. |
seed |
Numeric. |
... |
Additional parameters passed to |
Value
List. Contains lasso model coefficients, performance metrics, the actual model fitted and a plot.
See Also
Other Machine Learning:
ROC()
,
conf_mat()
,
export_results()
,
gain_lift()
,
h2o_automl()
,
h2o_predict_MOJO()
,
h2o_selectmodel()
,
impute()
,
iter_seeds()
,
model_metrics()
,
model_preprocess()
,
msplit()
Other Exploratory:
corr_cross()
,
corr_var()
,
crosstab()
,
df_str()
,
distr()
,
freqs_df()
,
freqs_list()
,
freqs_plot()
,
freqs()
,
missingness()
,
plot_cats()
,
plot_df()
,
plot_nums()
,
tree_var()
Examples
## Not run:
# CRAN
Sys.unsetenv("LARES_FONT") # Temporal
data(dft) # Titanic dataset
m <- lasso_vars(dft, Survived, ignore = c("Cabin"))
print(m$coef)
print(m$metrics)
plot(m$plot)
## End(Not run)