| ROC {lares} | R Documentation |
AUC and ROC Curves Data
Description
This function calculates ROC Curves and AUC values with 95% confidence range. It also works for multi-categorical models.
Usage
ROC(tag, score, multis = NA)
Arguments
tag |
Vector. Real known label |
score |
Vector. Predicted value or model's result |
multis |
Data.frame. Containing columns with each category score (only used when more than 2 categories coexist) |
Value
List with ROC's results, area under the curve (AUC) and their CI.
Plot Results
To plot results, use the mplot_roc() function.
See Also
Other Machine Learning:
conf_mat(),
export_results(),
gain_lift(),
h2o_automl(),
h2o_predict_MOJO(),
h2o_selectmodel(),
impute(),
iter_seeds(),
lasso_vars(),
model_metrics(),
model_preprocess(),
msplit()
Other Model metrics:
conf_mat(),
errors(),
gain_lift(),
loglossBinary(),
model_metrics()
Examples
data(dfr) # Results for AutoML Predictions
lapply(dfr[c(1, 2)], head)
# ROC Data for Binomial Model
roc1 <- ROC(dfr$class2$tag, dfr$class2$scores)
lapply(roc1, head)
# ROC Data for Multi-Categorical Model
roc2 <- ROC(dfr$class3$tag, dfr$class3$score,
multis = subset(dfr$class3, select = -c(tag, score))
)
lapply(roc2, head)
[Package lares version 5.2.8 Index]