| spanish {languageR} | R Documentation |
Relative frequencies of tag trigrams is selected Spanish texts
Description
Relative frequencies of the 120 most frequent tag trigrams in 15 texts contributed by 3 authors.
Usage
data(spanish)
Format
A data frame with 120 observations on 15 variables documented in
spanishMeta.
References
Spassova, M. S. (2006) Las marcas sintacticas de atribucion forense de autoria de textos escritos en espanol, Masters thesis, Institut Universitari de Linguistica Aplicada, Universitat Pompeu Fabra, Barcelona.
Examples
## Not run:
data(spanish)
data(spanishMeta)
# principal components analysis
spanish.t = t(spanish)
spanish.pca = prcomp(spanish.t, center = TRUE, scale = TRUE)
spanish.x = data.frame(spanish.pca$x)
spanish.x = spanish.x[order(rownames(spanish.x)), ]
library(lattice)
splom(~spanish.x[ , 1:3], groups = spanishMeta$Author)
# linear discriminant analysis
library(MASS)
spanish.pca.lda = lda(spanish.x[ , 1:8], spanishMeta$Author)
plot(spanish.pca.lda)
# cross-validation
n = 8
spanish.t = spanish.t[order(rownames(spanish.t)), ]
predictedClasses = rep("", 15)
for (i in 1:15) {
training = spanish.t[-i,]
trainingAuthor = spanishMeta[-i,]$Author
training.pca = prcomp(training, center=TRUE, scale=TRUE)
training.x = data.frame(training.pca$x)
training.x = training.x[order(rownames(training.x)), ]
training.pca.lda = lda(training[ , 1:n], trainingAuthor)
predictedClasses[i] =
as.character(predict(training.pca.lda, spanish.t[ , 1:n])$class[i])
}
ncorrect = sum(predictedClasses==as.character(spanishMeta$Author))
ncorrect
sum(dbinom(ncorrect:15, 15, 1/3))
## End(Not run)
[Package languageR version 1.5.0 Index]