| shrinkage {languageR} | R Documentation |
Data set illustrating shrinkage
Description
Simulated data set for illustrating shrinkage.
Usage
data(shrinkage)
Format
A data frame with 200 observations on the following 6 variables.
intercepta numeric vector for the intercept.
frequencya numeric vector for word frequency.
subjecta factor for subjects with levels
S1,S2, ... ,S10.errora numeric vector for residuals.
ranefa numeric vector for random effect.
RTa numeric vector for simulated RTs.
Examples
## Not run:
data(shrinkage)
require(lme4)
require(lmerTest)
require(optimx)
shrinkage.lmer = lmer(RT ~ frequency + (1|subject),
data = shrinkage,
control=lmerControl(optimizer="optimx",optCtrl=list(method="nlminb"))
shrinkage.lmList = lmList(RT ~ frequency | subject, data = shrinkage)
# and visualize the difference between random regression
# and mixed-effects regression
mixed = coef(shrinkage.lmer)[[1]]
random = coef(shrinkage.lmList)
subj = unique(shrinkage[,c("subject", "ranef")])
subj = subj[order(subj$subject),]
subj$random = random[,1]
subj$mixed = mixed[,1]
subj = subj[order(subj$random),]
subj$rank = 1:nrow(subj)
par(mfrow=c(1,2))
plot(subj$rank, subj$random, xlab="rank", ylab="RT", ylim=c(200,550), type="n")
text(subj$rank, subj$random, as.character(subj$subject), cex=0.8, col="red")
mtext("random regression", 3, 1)
points(subj$rank, 400+subj$ranef, col="blue")
abline(h=400)
plot(subj$rank, subj$mixed, xlab="rank", ylab="RT", ylim=c(200,550), type="n")
text(subj$rank, subj$mixed, as.character(subj$subject), cex=0.8, col = "red")
mtext("mixed-effects regression", 3, 1)
points(subj$rank, 400+subj$ranef, col="blue")
abline(h=400)
par(mfrow=c(1,1))
## End(Not run)
[Package languageR version 1.5.0 Index]