dative {languageR} | R Documentation |
Dative Alternation
Description
Data describing the realization of the dative as NP or PP in the Switchboard corpus and the Treebank Wall Street Journal collection.
Usage
data(dative)
Format
A data frame with 3263 observations on the following 15 variables.
Speaker
a factor coding speaker; available only for the subset of spoken English.
Modality
a factor with levels
spoken
,written
.Verb
a factor with the verbs as levels.
SemanticClass
a factor with levels
a
(abstract: 'give it some thought'),c
(communication: 'tell, give me your name'),f
(future transfer of possession: 'owe, promise'),p
(prevention of possession: 'cost, deny'), andt
(transfer of possession: 'give an armband, send').LengthOfRecipient
a numeric vector coding the number of words comprising the recipient.
AnimacyOfRec
a factor with levels
animate
andinanimate
for the animacy of the recipient.DefinOfRec
a factor with levels
definite
andindefinite
coding the definiteness of the recipient.PronomOfRec
a factor with levels
nonpronominal
andpronominal
coding the pronominality of the recipient.LengthOfTheme
a numeric vector coding the number of words comprising the theme.
AnimacyOfTheme
a factor with levels
animate
andinanimate
coding the animacy of the theme.DefinOfTheme
a factor with levels
definite
andindefinite
coding the definiteness of the theme.PronomOfTheme
a factor with levels
nonpronominal
andpronominal
coding the pronominality of the theme.RealizationOfRecipient
a factor with levels
NP
andPP
coding the realization of the dative.AccessOfRec
a factor with levels
accessible
,given
, andnew
coding the accessibility of the recipient.AccessOfTheme
a factor with levels
accessible
,given
, andnew
coding the accessibility of the theme.
References
Bresnan, J., Cueni, A., Nikitina, T. and Baayen, R. H. (2007) Predicting the dative alternation, in Bouma, G. and Kraemer, I. and Zwarts, J. (eds.), Cognitive Foundations of Interpretation, Royal Netherlands Academy of Sciences, 33 pages, in press.
Examples
## Not run:
data(dative)
# analysis with CART tree
library(rpart)
# ---- initial tree
dative.rp = rpart(RealizationOfRecipient ~ .,
data = dative[ ,-c(1, 3)]) # exclude the columns with subjects, verbs
plot(dative.rp, compress = TRUE, branch = 1, margin = 0.1)
text(dative.rp, use.n = TRUE, pretty = 0)
# ---- pruning the initial tree
plotcp(dative.rp)
dative.rp1 = prune(dative.rp, cp = 0.041)
plot(dative.rp1, compress = TRUE, branch = 1, margin = 0.1)
text(dative.rp1, use.n = TRUE, pretty = 0)
# analysis with logistic regression
# ---- logistic regression with the rms package
library(rms)
dative.dd = datadist(dative)
options(datadist = 'dative.dd')
dative.lrm = lrm(RealizationOfRecipient ~
AccessOfTheme + AccessOfRec + LengthOfRecipient + AnimacyOfRec +
AnimacyOfTheme + PronomOfTheme + DefinOfTheme + LengthOfTheme+
SemanticClass + Modality, data = dative)
anova(dative.lrm)
plot(Predict(dative.lrm))
# ---- mixed-effects logistic regression with the lme4 package
require(lme4)
require(lmerTest)
require(optimx)
dative.lmer = glmer(RealizationOfRecipient ~ AccessOfTheme +
AccessOfRec + LengthOfRecipient + AnimacyOfRec +
AnimacyOfTheme + PronomOfTheme + DefinOfTheme + LengthOfTheme +
SemanticClass + Modality + (1|Verb),
control=glmerControl(optimizer="optimx",optCtrl=list(method="nlminb")),
data = dative, family = "binomial")
summary(dative.lmer)
# multiple comparisons for Accessibility of Theme
require(multcomp)
par(mar=c(5,8,3,1))
AcOfTheme.glht <- glht(dative.lmer, linfct = mcp(AccessOfTheme = "Tukey"))
plot(AcOfTheme.glht)
abline(v=0)
summary(AcOfTheme.glht)
## End(Not run)