| dative {languageR} | R Documentation |
Dative Alternation
Description
Data describing the realization of the dative as NP or PP in the Switchboard corpus and the Treebank Wall Street Journal collection.
Usage
data(dative)
Format
A data frame with 3263 observations on the following 15 variables.
Speakera factor coding speaker; available only for the subset of spoken English.
Modalitya factor with levels
spoken,written.Verba factor with the verbs as levels.
SemanticClassa factor with levels
a(abstract: 'give it some thought'),c(communication: 'tell, give me your name'),f(future transfer of possession: 'owe, promise'),p(prevention of possession: 'cost, deny'), andt(transfer of possession: 'give an armband, send').LengthOfRecipienta numeric vector coding the number of words comprising the recipient.
AnimacyOfReca factor with levels
animateandinanimatefor the animacy of the recipient.DefinOfReca factor with levels
definiteandindefinitecoding the definiteness of the recipient.PronomOfReca factor with levels
nonpronominalandpronominalcoding the pronominality of the recipient.LengthOfThemea numeric vector coding the number of words comprising the theme.
AnimacyOfThemea factor with levels
animateandinanimatecoding the animacy of the theme.DefinOfThemea factor with levels
definiteandindefinitecoding the definiteness of the theme.PronomOfThemea factor with levels
nonpronominalandpronominalcoding the pronominality of the theme.RealizationOfRecipienta factor with levels
NPandPPcoding the realization of the dative.AccessOfReca factor with levels
accessible,given, andnewcoding the accessibility of the recipient.AccessOfThemea factor with levels
accessible,given, andnewcoding the accessibility of the theme.
References
Bresnan, J., Cueni, A., Nikitina, T. and Baayen, R. H. (2007) Predicting the dative alternation, in Bouma, G. and Kraemer, I. and Zwarts, J. (eds.), Cognitive Foundations of Interpretation, Royal Netherlands Academy of Sciences, 33 pages, in press.
Examples
## Not run:
data(dative)
# analysis with CART tree
library(rpart)
# ---- initial tree
dative.rp = rpart(RealizationOfRecipient ~ .,
data = dative[ ,-c(1, 3)]) # exclude the columns with subjects, verbs
plot(dative.rp, compress = TRUE, branch = 1, margin = 0.1)
text(dative.rp, use.n = TRUE, pretty = 0)
# ---- pruning the initial tree
plotcp(dative.rp)
dative.rp1 = prune(dative.rp, cp = 0.041)
plot(dative.rp1, compress = TRUE, branch = 1, margin = 0.1)
text(dative.rp1, use.n = TRUE, pretty = 0)
# analysis with logistic regression
# ---- logistic regression with the rms package
library(rms)
dative.dd = datadist(dative)
options(datadist = 'dative.dd')
dative.lrm = lrm(RealizationOfRecipient ~
AccessOfTheme + AccessOfRec + LengthOfRecipient + AnimacyOfRec +
AnimacyOfTheme + PronomOfTheme + DefinOfTheme + LengthOfTheme+
SemanticClass + Modality, data = dative)
anova(dative.lrm)
plot(Predict(dative.lrm))
# ---- mixed-effects logistic regression with the lme4 package
require(lme4)
require(lmerTest)
require(optimx)
dative.lmer = glmer(RealizationOfRecipient ~ AccessOfTheme +
AccessOfRec + LengthOfRecipient + AnimacyOfRec +
AnimacyOfTheme + PronomOfTheme + DefinOfTheme + LengthOfTheme +
SemanticClass + Modality + (1|Verb),
control=glmerControl(optimizer="optimx",optCtrl=list(method="nlminb")),
data = dative, family = "binomial")
summary(dative.lmer)
# multiple comparisons for Accessibility of Theme
require(multcomp)
par(mar=c(5,8,3,1))
AcOfTheme.glht <- glht(dative.lmer, linfct = mcp(AccessOfTheme = "Tukey"))
plot(AcOfTheme.glht)
abline(v=0)
summary(AcOfTheme.glht)
## End(Not run)