lamle-package {lamle} | R Documentation |
Maximum Likelihood Estimation of Latent Variable Models
Description
Approximate marginal maximum likelihood estimation of multidimensional latent variable models via adaptive quadrature or Laplace approximations to the integrals in the likelihood function, as presented for confirmatory factor analysis models in Jin, S., Noh, M., and Lee, Y. (2018) <doi:10.1080/10705511.2017.1403287>, for item response theory models in Andersson, B., and Xin, T. (2021) <doi:10.3102/1076998620945199>, and for generalized linear latent variable models in Andersson, B., Jin, S., and Zhang, M. (2023) <doi:10.1016/j.csda.2023.107710>. Models implemented include the generalized partial credit model, the graded response model, and generalized linear latent variable models for Poisson, negative-binomial and normal distributions. Supports a combination of binary, ordinal, count and continuous observed variables and multiple group models.
Details
The DESCRIPTION file:
Package: | lamle |
Encoding: | UTF-8 |
Type: | Package |
Title: | Maximum Likelihood Estimation of Latent Variable Models |
Version: | 0.3.1 |
Date: | 2023-08-24 |
Authors@R: | c(person(given = "Björn", family = "Andersson", role = c("aut", "cre"), email = "bjoern.h.andersson@gmail.com", comment = c(ORCID = "0000-0002-9007-2440")), person(given = "Shaobo", family = "Jin", role = c("aut"), email = "shaobo.jin@statistik.uu.se", comment = c(ORCID = "0000-0001-6538-3477")), person(given = "Maoxin", family = "Zhang", role = c("ctb"), email = "maoxin.zhang@cemo.uio.no")) |
Description: | Approximate marginal maximum likelihood estimation of multidimensional latent variable models via adaptive quadrature or Laplace approximations to the integrals in the likelihood function, as presented for confirmatory factor analysis models in Jin, S., Noh, M., and Lee, Y. (2018) <doi:10.1080/10705511.2017.1403287>, for item response theory models in Andersson, B., and Xin, T. (2021) <doi:10.3102/1076998620945199>, and for generalized linear latent variable models in Andersson, B., Jin, S., and Zhang, M. (2023) <doi:10.1016/j.csda.2023.107710>. Models implemented include the generalized partial credit model, the graded response model, and generalized linear latent variable models for Poisson, negative-binomial and normal distributions. Supports a combination of binary, ordinal, count and continuous observed variables and multiple group models. |
License: | GPL (>= 2) |
Imports: | Rcpp (>= 1.0.1), mvtnorm, numDeriv, stats, fastGHQuad, methods |
LinkingTo: | Rcpp, RcppArmadillo |
Author: | Björn Andersson [aut, cre] (<https://orcid.org/0000-0002-9007-2440>), Shaobo Jin [aut] (<https://orcid.org/0000-0001-6538-3477>), Maoxin Zhang [ctb] |
Maintainer: | Björn Andersson <bjoern.h.andersson@gmail.com> |
Archs: | x64 |
Index of help topics:
DGP Generation of Observed Data From a Generalized Linear Latent Variable Model lamle Estimation of Latent Variable Models with the Laplace Approximation or Adaptive Gauss-Hermite Quadrature lamle-package Maximum Likelihood Estimation of Latent Variable Models lamle.compute Compute Output from an Estimated Latent Variable Model lamle.fit Model Fit Statistics for an Estimated Latent Variable Model lamle.plot Plot Output from an Estimated Latent Variable Model lamle.predict Compute Latent Variable Estimates from an Estimated Latent Variable Model lamle.sim Generate Simulated Data from an Estimated Latent Variable Model lamleout-class Class "lamleout"
Author(s)
Björn Andersson, Shaobo Jin and Maoxin Zhang.
Maintainer: Björn Andersson <bjoern.h.andersson@gmail.com>
References
Andersson, B., Jin, S., and Zhang, M. (2023). Fast estimation of multiple group generalized linear latent variable models for categorical observed variables. Computational Statistics and Data Analysis, 182, 1-12. <doi:10.1016/j.csda.2023.107710>
Andersson, B., and Xin, T. (2021). Estimation of latent regression item response theory models using a second-order Laplace approximation. Journal of Educational and Behavioral Statistics, 46(2), 244-265. <doi:10.3102/1076998620945199>
Huber, P., Ronchetti, E., and Victoria-Feser, M.P. (2004). Estimation of generalized linear latent variable models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 66(4), 893-908. <doi:10.1111/j.1467-9868.2004.05627.x>
Jin, S., Noh, M., and Lee, Y. (2018). H-Likelihood Approach to Factor Analysis for Ordinal Data. Structural Equation Modeling: A Multidisciplinary Journal, 25(4), 530-540. <doi:10.1080/10705511.2017.1403287>
Shun, Z., and McCullagh, P. (1995). Laplace approximation of high dimensional integrals. Journal of the Royal Statistical Society: Series B (Methodological), 57(4), 749-760. <doi:10.1111/j.2517-6161.1995.tb02060.x>