summary.lacm {lacm} | R Documentation |
Methods for lacm
Objects
Description
Methods for fitted latent autoregressive count model objects of class "lacm"
Usage
## S3 method for class 'lacm'
summary(object, ...)
## S3 method for class 'lacm'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
## S3 method for class 'lacm'
coef(object, ...)
## S3 method for class 'lacm'
vcov(object, ...)
## S3 method for class 'lacm'
simulate(object, nsim = 1, seed = NULL, ...)
Arguments
object , x |
a fitted model object of class |
digits |
the number of significant digits to use when printing. |
nsim |
number of response vectors to simulate. Defaults to |
seed |
an object specifying if and how the random number generator should be initialized ('seeded'). See |
... |
additional optional arguments. |
Value
The function summary.lacm
returns an object of class "summary.lacm"
, a list of some components of the "lacm"
object, plus
coefficients |
a summary of the parameter estimates, standard errors, z-values and corresponding p-values. |
clic |
the composite likelihood information criterion. |
The function simulate.lacm
returns a list of simulated responses.
The function print
returns the call
and coefficients
, coef
returns the estimated coefficients and vcov
the corresponding variance-covariance matrix.
Author(s)
Xanthi Pedeli and Cristiano Varin.
References
Pedeli, X. and Varin, C. (2020). Pairwise likelihood estimation of latent autoregressive count models. Statistical Methods in Medical Research.doi: 10.1177/0962280220924068.
See Also
CLIC
.
Examples
data("polio", package = "lacm")
## model components
trend <- 1:length(polio)
sin.term <- sin(2 * pi * trend / 12)
cos.term <- cos(2 * pi * trend / 12)
sin2.term <- sin(2 * pi * trend / 6)
cos2.term <- cos(2 * pi * trend / 6)
## fit model with pairwise likelihood of order 1
mod1 <- lacm(polio ~ I(trend * 10^(-3)) + sin.term + cos.term + sin2.term + cos2.term)
mod1
summary(mod1)
## refit with d = 3
mod3 <- update(mod1, d = 3)
summary(mod3)