look_for {labelled} | R Documentation |
Look for keywords variable names and descriptions / Create a data dictionary
Description
look_for
emulates the lookfor
Stata command in R. It supports
searching into the variable names of regular R data frames as well as into
variable labels descriptions, factor levels and value labels.
The command is meant to help users finding variables in large datasets.
Usage
look_for(
data,
...,
labels = TRUE,
values = TRUE,
ignore.case = TRUE,
details = c("basic", "none", "full")
)
lookfor(
data,
...,
labels = TRUE,
values = TRUE,
ignore.case = TRUE,
details = c("basic", "none", "full")
)
generate_dictionary(
data,
...,
labels = TRUE,
values = TRUE,
ignore.case = TRUE,
details = c("basic", "none", "full")
)
## S3 method for class 'look_for'
print(x, ...)
look_for_and_select(
data,
...,
labels = TRUE,
values = TRUE,
ignore.case = TRUE
)
convert_list_columns_to_character(x)
lookfor_to_long_format(x)
Arguments
data |
a data frame or a survey object |
... |
optional list of keywords, a character string (or several
character strings), which can be formatted as a regular expression suitable
for a |
labels |
whether or not to search variable labels (descriptions);
|
values |
whether or not to search within values (factor levels or value
labels); |
ignore.case |
whether or not to make the keywords case sensitive;
|
details |
add details about each variable (full details could be time
consuming for big data frames, |
x |
a tibble returned by |
Details
When no keyword is provided, it will produce a data dictionary of the overall data frame.
The function looks into the variable names for matches to the
keywords. If available, variable labels are included in the search scope.
Variable labels of data.frame imported with foreign or
memisc packages will also be taken into account (see to_labelled()
).
If no keyword is provided, it will return all variables of data
.
look_for()
, lookfor()
and generate_dictionary()
are equivalent.
By default, results will be summarized when printing. To deactivate default
printing, use dplyr::as_tibble()
.
lookfor_to_long_format()
could be used to transform results with one row
per factor level and per value label.
Use convert_list_columns_to_character()
to convert named list columns into
character vectors (see examples).
look_for_and_select()
is a shortcut for selecting some variables and
applying dplyr::select()
to return a data frame with only the selected
variables.
Value
a tibble data frame featuring the variable position, name and description (if it exists) in the original data frame
Author(s)
François Briatte f.briatte@gmail.com, Joseph Larmarange joseph@larmarange.net
Source
Inspired by the lookfor
command in Stata.
Examples
look_for(iris)
# Look for a single keyword.
look_for(iris, "petal")
look_for(iris, "s")
iris %>%
look_for_and_select("s") %>%
head()
# Look for with a regular expression
look_for(iris, "petal|species")
look_for(iris, "s$")
# Look for with several keywords
look_for(iris, "pet", "sp")
look_for(iris, "pet", "sp", "width")
look_for(iris, "Pet", "sp", "width", ignore.case = FALSE)
# Look_for can search within factor levels or value labels
look_for(iris, "vers")
# Quicker search without variable details
look_for(iris, details = "none")
# To obtain more details about each variable
look_for(iris, details = "full")
# To deactivate default printing, convert to tibble
look_for(iris, details = "full") %>%
dplyr::as_tibble()
# To convert named lists into character vectors
look_for(iris) %>% convert_list_columns_to_character()
# Long format with one row per factor and per value label
look_for(iris) %>% lookfor_to_long_format()
# Both functions can be combined
look_for(iris) %>%
lookfor_to_long_format() %>%
convert_list_columns_to_character()
# Labelled data
d <- dplyr::tibble(
region = labelled_spss(
c(1, 2, 1, 9, 2, 3),
c(north = 1, south = 2, center = 3, missing = 9),
na_values = 9,
label = "Region of the respondent"
),
sex = labelled(
c("f", "f", "m", "m", "m", "f"),
c(female = "f", male = "m"),
label = "Sex of the respondent"
)
)
look_for(d)
d %>%
look_for() %>%
lookfor_to_long_format() %>%
convert_list_columns_to_character()