l0ara {l0ara} | R Documentation |
fit a generalized linear model with l0 penalty
Description
An adaptive ridge algorithm for feature selection with L0 penalty.
Usage
l0ara(x, y, family, lam, standardize, maxit, eps)
Arguments
x |
Input matrix, of dimension nobs x nvars; each row is an observation vector. |
y |
Response variable. Quantitative for |
family |
Response type(see above). |
lam |
A user supplied |
standardize |
Logical flag for data normalization. If |
maxit |
Maximum number of passes over the data for |
eps |
Convergence threshold. Default value is |
Details
The sequence of models indexed by the parameter lambda is fit using adptive ridge algorithm. The objective function for generalized linear models (including family
above) is defined to be
is the number of non-zero elements in
. To select the "best" model with AIC or BIC criterion, let
lambda
to be 2 or log(n)
. This adaptive ridge algorithm is developed to approximate L0 penalized generalized linear models with sequential optimization and is efficient for high-dimensional data.
Value
An object with S3 class "l0ara" containing:
beta |
A vector of coefficients |
df |
Number of nonzero coefficients |
iter |
Number of iterations |
lambda |
The lambda used |
x |
Design matrix |
y |
Response variable |
Author(s)
Wenchuan Guo <wguo007@ucr.edu>, Shujie Ma <shujie.ma@ucr.edu>, Zhenqiu Liu <Zhenqiu.Liu@cshs.org>
See Also
cv.l0ara
, predict.l0ara
, coef.l0ara
, plot.l0ara
methods.
Examples
# Linear regression
# Generate design matrix and response variable
n <- 100
p <- 40
x <- matrix(rnorm(n*p), n, p)
beta <- c(1,0,2,3,rep(0,p-4))
noise <- rnorm(n)
y <- x%*%beta+noise
# fit sparse linear regression using BIC
res.gaussian <- l0ara(x, y, family="gaussian", log(n))
# predict for new observations
print(res.gaussian)
predict(res.gaussian, newx=matrix(rnorm(3,p),3,p))
coef(res.gaussian)
# Logistic regression
# Generate design matrix and response variable
n <- 100
p <- 40
x <- matrix(rnorm(n*p), n, p)
beta <- c(1,0,2,3,rep(0,p-4))
prob <- exp(x%*%beta)/(1+exp(x%*%beta))
y <- rbinom(n, rep(1,n), prob)
# fit sparse logistic regression
res.logit <- l0ara(x, y, family="logit", 0.7)
# predict for new observations
print(res.logit)
predict(res.logit, newx=matrix(rnorm(3,p),3,p))
coef(res.logit)
# Poisson regression
# Generate design matrix and response variable
n <- 100
p <- 40
x <- matrix(rnorm(n*p), n, p)
beta <- c(1,0,0.5,0.3,rep(0,p-4))
mu <- exp(x%*%beta)
y <- rpois(n, mu)
# fit sparse Poisson regression using AIC
res.pois <- l0ara(x, y, family="poisson", 2)
# predict for new observations
print(res.pois)
predict(res.pois, newx=matrix(rnorm(3,p),3,p))
coef(res.pois)