regression.model.functions {kyotil} | R Documentation |
Regression Model Functions
Description
getFormattedSummary prints a table of regression coefficient estimates and standard errors.
Usage
getFormattedSummary(fits, type = 12, est.digits = 2, se.digits = 2,
robust, random = FALSE, VE = FALSE, to.trim = FALSE,
rows = NULL, coef.direct = FALSE, trunc.large.est =
TRUE, scale.factor = 1, p.digits = 3, remove.leading0
= FALSE, p.adj.method = "fdr", ...)
getVarComponent(object, ...)
getFixedEf(object, ...)
risk.cal(risk, binary.outcome, weights = NULL, ngroups = NULL,
cuts = NULL, main = "", add = FALSE, show.emp.risk = TRUE,
lcol = 2, ylim = NULL, scale = c("logit", "risk"))
interaction.table(fit, v1, v2, v1.type = "continuous", v2.type = "continuous",
logistic.regression = TRUE)
## S3 method for class 'coxph'
getFixedEf(object, exp=FALSE,robust=FALSE, ...)
## S3 method for class 'gam'
getFixedEf(object, ...)
## S3 method for class 'gee'
getFixedEf(object, exp = FALSE, ...)
## S3 method for class 'geese'
getFixedEf(object, robust = TRUE, ...)
## S3 method for class 'tps'
getFixedEf(object, exp=FALSE, robust=TRUE, ...)
## S3 method for class 'glm'
getFixedEf(object, exp = FALSE, robust = TRUE, ret.robcov = FALSE,
...)
## S3 method for class 'svyglm'
getFixedEf(object, exp = FALSE, robust = TRUE, ...)
## S3 method for class 'svy_vglm'
getFixedEf(object, exp = FALSE, robust = TRUE, ...)
## S3 method for class 'svycoxph'
getFixedEf(object, exp = FALSE, robust = TRUE, ...)
## S3 method for class 'inla'
getFixedEf(object, ...)
## S3 method for class 'lm'
getFixedEf(object, ...)
## S3 method for class 'lme'
getFixedEf(object, ...)
## S3 method for class 'logistf'
getFixedEf(object, exp = FALSE, ...)
## S3 method for class 'matrix'
getFixedEf(object, ...)
## S3 method for class 'MIresult'
getFixedEf(object, ...)
## S3 method for class 'hyperpar.inla'
getVarComponent(object, transformation = NULL, ...)
## S3 method for class 'matrix'
getVarComponent(object, ...)
## S3 method for class 'geese'
coef(object, ...)
## S3 method for class 'tps'
coef(object, ...)
## S3 method for class 'geese'
predict(object, x, ...)
## S3 method for class 'tps'
predict(object, newdata = NULL, type = c("link", "response"), ...)
## S3 method for class 'geese'
residuals(object, y, x,...)
## S3 method for class 'geese'
vcov(object, ...)
## S3 method for class 'tps'
vcov(object, robust, ...)
## S3 method for class 'logistf'
vcov(object, ...)
Arguments
... |
tbd... |
object |
tbdobject |
fit |
tbdfit |
coef.direct |
tbdfit |
robust |
Boolean, whether to return robust variance estimate |
exp |
tbdexp |
remove.leading0 |
tbdexp |
p.adj.method |
tbdexp |
cuts |
tbdfits |
ret.robcov |
tbdfits |
fits |
tbdfits |
type |
tbdtype |
est.digits |
tbdest.digits |
se.digits |
tbdse.digits |
p.digits |
tbdse.digits |
random |
tbdrandom |
VE |
tbdrandom |
transformation |
tbdtransformation |
weights |
tbdv1 |
v1 |
tbdv1 |
v2 |
tbdv2 |
v1.type |
tbdv1.type |
v2.type |
tbdv2.type |
logistic.regression |
tbdlogistic.regression |
newdata |
tbdx |
x |
tbdx |
y |
tbdy |
to.trim |
tbdy |
rows |
tbdy |
risk |
tbdfit |
binary.outcome |
tbdfit |
ngroups |
tbdfit |
main |
tbdfit |
add |
tbdfit |
show.emp.risk |
tbdfit |
lcol |
tbdfit |
ylim |
tbdfit |
scale |
tbdfit |
trunc.large.est |
tbdfit |
scale.factor |
tbdfit |
Details
getFormattedSummary: from a list of fits, say lmer, inla fits, return formatted summary controlled by "type". For a matrix, return Monte Carlo variance random=TRUE returns variance components type=1: est type=2: est (se) type=3: est (2.5 percent, 97.5 percent) type=4: est se
getFixedEf returns a matrix, first column coef, second column se,
getFixedEf.matrix used to get mean and sd from a jags or winbugs sample, getVarComponent.matrix and getFixedEf.matrix do the same thing. Each column of samples is a variable
interaction.table expects coef and vcov to work with fit.
Examples
## Annette Dobson (1990) "An Introduction to Generalized Linear Models".
## Page 9: Plant Weight Data.
ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14)
trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69)
group <- gl(2, 10, 20, labels = c("Ctl","Trt"))
weight <- c(ctl, trt)
lm.D9 <- lm(weight ~ group)
glm.D9 <- glm(weight ~ group)
getFormattedSummary (list(lm.D9, glm.D9), robust=FALSE)