rcpp_ksNN {ksNN} | R Documentation |
This function calculates the prediction value of k* nearest neighbors algorithm.
Description
This function calculates the prediction value of k* nearest neighbors algorithm.
Usage
rcpp_ksNN(Label, Distance, L_C = 1)
Arguments
Label |
vectors of the known labels of the samples. |
Distance |
vectors of the distance between the target sample we want to predict and the other samples. |
L_C |
parameter of k* nearest neighbors algorithm. |
Value
the prediction value(pred) and the weight of the samples(alpha).
Note
This algorithm is based on Anava and Levy(2017).
Examples
library(ksNN)
set.seed(1)
#make the nonlinear regression problem
X<-runif(100)
Y<-X^6-3*X^3+5*X^2+2
suffle<-order(rnorm(length(X)))
X<-X[suffle]
Y<-Y[suffle]
test_X<-X[1]
test_Y<-Y[1]
train_X<-X[-1]
train_Y<-Y[-1]
Label<-train_Y
Distance<-sqrt((test_X-train_X)^2)
pred_ksNN<-rcpp_ksNN(Label,Distance,L_C=1)
#the predicted value with k*NN
pred_ksNN$pred
#the 'true' value
test_Y
[Package ksNN version 0.1.2 Index]