kcde {ks} | R Documentation |
Kernel cumulative distribution/survival function estimate
Description
Kernel cumulative distribution/survival function estimate for 1- to 3-dimensional data.
Usage
kcde(x, H, h, gridsize, gridtype, xmin, xmax, supp=3.7, eval.points, binned,
bgridsize, positive=FALSE, adj.positive, w, verbose=FALSE,
tail.flag="lower.tail")
Hpi.kcde(x, nstage=2, pilot, Hstart, binned, bgridsize, amise=FALSE,
verbose=FALSE, optim.fun="optim", pre=TRUE)
Hpi.diag.kcde(x, nstage=2, pilot, Hstart, binned, bgridsize, amise=FALSE,
verbose=FALSE, optim.fun="optim", pre=TRUE)
hpi.kcde(x, nstage=2, binned, amise=FALSE)
## S3 method for class 'kcde'
predict(object, ..., x)
Arguments
x |
matrix of data values |
H , h |
bandwidth matrix/scalar bandwidth. If these are missing, then
|
gridsize |
vector of number of grid points |
gridtype |
not yet implemented |
xmin , xmax |
vector of minimum/maximum values for grid |
supp |
effective support for standard normal |
eval.points |
vector or matrix of points at which estimate is evaluated |
binned |
flag for binned estimation. Default is FALSE. |
bgridsize |
vector of binning grid sizes |
positive |
flag if 1-d data are positive. Default is FALSE. |
adj.positive |
adjustment applied to positive 1-d data |
w |
not yet implemented |
verbose |
flag to print out progress information. Default is FALSE. |
tail.flag |
"lower.tail" = cumulative distribution, "upper.tail" = survival function |
nstage |
number of stages in the plug-in bandwidth selector (1 or 2) |
pilot |
"dscalar" = single pilot bandwidth (default for
|
Hstart |
initial bandwidth matrix, used in numerical optimisation |
amise |
flag to return the minimal scaled PI value |
optim.fun |
optimiser function: one of |
pre |
flag for pre-scaling data. Default is TRUE. |
object |
object of class |
... |
other parameters |
Details
If tail.flag="lower.tail"
then the cumulative distribution
function \mathrm{Pr}(\bold{X}\leq\bold{x})
is estimated, otherwise
if tail.flag="upper.tail"
, it is the survival function
\mathrm{Pr}(\bold{X}>\bold{x})
. For d>1
,
\mathrm{Pr}(\bold{X}\leq\bold{x}) \neq 1 - \mathrm{Pr}(\bold{X}>\bold{x})
.
If the bandwidth H
is missing in kcde
, then
the default bandwidth is the plug-in selector
Hpi.kcde
. Likewise for missing h
.
No pre-scaling/pre-sphering is used since the Hpi.kcde
is not
invariant to translation/dilation.
The effective support, binning, grid size, grid range, positive, optimisation function
parameters are the same as kde
.
Value
A kernel cumulative distribution estimate is an object of class
kcde
which is a list with fields:
x |
data points - same as input |
eval.points |
vector or list of points at which the estimate is evaluated |
estimate |
cumulative distribution/survival function estimate at
|
h |
scalar bandwidth (1-d only) |
H |
bandwidth matrix |
gridtype |
"linear" |
gridded |
flag for estimation on a grid |
binned |
flag for binned estimation |
names |
variable names |
w |
vector of weights |
tail |
"lower.tail"=cumulative distribution, "upper.tail"=survival function |
References
Duong, T. (2016) Non-parametric smoothed estimation of multivariate cumulative distribution and survival functions, and receiver operating characteristic curves. Journal of the Korean Statistical Society, 45, 33-50.
See Also
Examples
data(iris)
Fhat <- kcde(iris[,1:2])
predict(Fhat, x=as.matrix(iris[,1:2]))
## See other examples in ? plot.kcde