Hlscv {ks} | R Documentation |
Least-squares cross-validation (LSCV) bandwidth matrix selector for multivariate data
Description
LSCV bandwidth for 1- to 6-dimensional data
Usage
Hlscv(x, Hstart, binned, bgridsize, amise=FALSE, deriv.order=0,
verbose=FALSE, optim.fun="optim", trunc)
Hlscv.diag(x, Hstart, binned, bgridsize, amise=FALSE, deriv.order=0,
verbose=FALSE, optim.fun="optim", trunc)
hlscv(x, binned=TRUE, bgridsize, amise=FALSE, deriv.order=0, bw.ucv=TRUE)
Hucv(...)
Hucv.diag(...)
hucv(...)
Arguments
x |
vector or matrix of data values |
Hstart |
initial bandwidth matrix, used in numerical optimisation |
binned |
flag for binned kernel estimation |
bgridsize |
vector of binning grid sizes |
amise |
flag to return the minimal LSCV value. Default is FALSE. |
deriv.order |
derivative order |
verbose |
flag to print out progress information. Default is FALSE. |
optim.fun |
optimiser function: one of |
trunc |
parameter to control truncation for numerical optimisation. Default is 4 for density.deriv>0, otherwise no truncation. For details see below. |
bw.ucv |
flag to use |
... |
parameters as above |
Details
hlscv
is the univariate LSCV
selector of Bowman (1984) and Rudemo (1982). Hlscv
is a
multivariate generalisation of this. Use Hlscv
for unconstrained
bandwidth matrices and Hlscv.diag
for diagonal bandwidth matrices.
Hucv
, Hucv.diag
and hucv
are aliases with UCV
(unbiased cross validation) instead of LSCV.
For ks \geq
1.13.0, the default minimiser in hlscv
is based on the UCV minimiser
stats::bw.ucv
. To reproduce prior behaviour, set bw.ucv=FALSE
.
Truncation of the parameter space is usually required for the LSCV selector,
for r > 0, to find a reasonable solution to the numerical optimisation.
If a candidate matrix H
is
such that det(H)
is not in [1/trunc, trunc]*det(H0)
or
abs(LSCV(H)) > trunc*abs(LSCV0)
then the LSCV(H)
is reset to LSCV0
where
H0=Hns(x)
and LSCV0=LSCV(H0)
.
For details about the advanced options for binned,Hstart,optim.fun
,
see Hpi
.
Value
LSCV bandwidth. If amise=TRUE
then the minimal LSCV value is returned too.
References
Bowman, A. (1984) An alternative method of cross-validation for the smoothing of kernel density estimates. Biometrika, 71, 353-360.
Rudemo, M. (1982) Empirical choice of histograms and kernel density estimators. Scandinavian Journal of Statistics, 9, 65-78.
See Also
Examples
data(forbes, package="MASS")
Hlscv(forbes)
hlscv(forbes$bp)