as.mcmc.krige {krige} | R Documentation |
Convert krige
object to an mcmc
object
Description
Convert MCMC matrix of posterior samples for use with the coda package
Usage
## S3 method for class 'krige'
as.mcmc(x, start = 1, end = x$n.iter, thin = 1, ...)
## S3 method for class 'summary.krige'
as.mcmc(x, start = 1, end = x$n.iter, thin = 1, ...)
Arguments
x |
An |
start |
The iteration number of the first observation. |
end |
The iteration number of the last observation. |
thin |
The thinning interval between consecutive observations. |
... |
Additional arguments to be passed to |
Details
The function converts a krige
output object to a Markov Chain
Monte Carlo (mcmc) object used in coda
as well as a variety of MCMC
packages. It extracts the MCMC matrix of posterior samples from the output
of metropolis.krige
for further use with other MCMC packages and functions.
Value
A mcmc
object.
See Also
Examples
## Not run:
# Summarize Data
summary(ContrivedData)
# Set seed
set.seed(1241060320)
#For simple illustration, we set to few iterations.
#In this case, a 10,000-iteration run converges to the true parameters.
#If you have considerable time and hardware, delete the # on the next line.
#10,000 iterations took 39 min. with 8 GB RAM & a 1.5 GHz Quad-Core processor.
M <- 100
#M<-10000
contrived.run <- metropolis.krige(y ~ x.1 + x.2, coords = c("s.1","s.2"),
data = ContrivedData, n.iter = M, n.burnin = 20,
range.tol = 0.05)
# Convert to mcmc object
mcmc.contrived.run <- as.mcmc(contrived.run)
#mcmc.contrived.run <- as.mcmc(summary(contrived.run))
# Diagnostics using MCMC packages
coda::raftery.diag(mcmc.contrived.run)
# superdiag::superdiag(mcmc.contrived.run) #NOT WORKING YET
## End(Not run)
[Package krige version 0.6.2 Index]