dcov.gamma {kpcalg} | R Documentation |
Test to check the independence between two variables x and y using the Distance Covariance. The dcov.gamma() function, uses Distance Covariance independence criterion with gamma approximation to test for independence between two random variables.
Description
Test to check the independence between two variables x and y using the Distance Covariance. The dcov.gamma() function, uses Distance Covariance independence criterion with gamma approximation to test for independence between two random variables.
Usage
dcov.gamma(x, y, index = 1, numCol = 100)
Arguments
x |
data of first sample |
y |
data of second sample |
index |
exponent on Euclidean distance, in (0,2] |
numCol |
Number of columns used in incomplete Singular Value Decomposition |
Details
Let x and y be two samples of length n. Gram matrices K and L are defined as: K_{i,j} = \| x_i-x_j \|^s
and L_{i,j} = \| y_i-y_j \|^s
, where 0<s<2. H_{i,j} = \delta_{i,j} - \frac{1}{n}
. Let A=HKH and B=HLH, then nV^2=\frac{1}{n^2}\sum A_{i,j} B_{i,j}
. For more detail: dcov.test in package energy. Gamma test compares nV^2_n(x,y)
with the \alpha
quantile of the gamma distribution with mean and variance same as nV^2_n
under independence hypothesis.
Value
dcov.gamma() returns a list with class htest containing
method |
description of test |
statistic |
observed value of the test statistic |
estimate |
nV^2(x,y) |
estimates |
a vector: [nV^2(x,y), mean of nV^2(x,y), variance of nV^2(x,y)] |
replicates |
replicates of the test statistic |
p.value |
approximate p-value of the test |
data.name |
desciption of data |
Author(s)
Petras Verbyla (petras.verbyla@mrc-bsu.cam.ac.uk) and Nina Ines Bertille Desgranges
References
A. Gretton et al. (2005). Kernel Methods for Measuring Independence. JMLR 6 (2005) 2075-2129.
G. Szekely, M. Rizzo and N. Bakirov (2007). Measuring and Testing Dependence by Correlation of Distances. The Annals of Statistics 2007, Vol. 35, No. 6, 2769-2794.
See Also
hsic.perm, hsic.clust, hsic.gamma, dcov.test, kernelCItest
Examples
library(energy)
set.seed(10)
#independence
x <- runif(300)
y <- runif(300)
hsic.gamma(x,y)
hsic.perm(x,y)
dcov.gamma(x,y)
dcov.test(x,y)
#uncorelated but not dependent
z <- 10*(runif(300)-0.5)
w <- z^2 + 10*runif(300)
cor(z,w)
hsic.gamma(z,w)
hsic.perm(z,w)
dcov.gamma(z,w)
dcov.test(z,w)