stat.lasso_lambdadiff {knockoff} | R Documentation |
Importance statistics based on the lasso
Description
Fit the lasso path and computes the difference statistic
where and
are the maximum values of the
regularization parameter
at which the jth variable
and its knockoff enter the penalized linear regression model, respectively.
Usage
stat.lasso_lambdadiff(X, X_k, y, ...)
Arguments
X |
n-by-p matrix of original variables. |
X_k |
n-by-p matrix of knockoff variables. |
y |
vector of length n, containing the response variables. It should be numeric. |
... |
additional arguments specific to |
Details
This function uses glmnet
to compute the lasso path
on a fine grid of 's and is a wrapper around the more general
stat.glmnet_lambdadiff.
The nlambda
parameter can be used to control the granularity of the
grid of 's. The default value of
nlambda
is 500
.
Unless a lambda sequence is provided by the user, this function generates it on a
log-linear scale before calling glmnet
(default 'nlambda': 500).
For a complete list of the available additional arguments, see glmnet
or lars
.
Value
A vector of statistics of length p.
See Also
Other statistics:
stat.forward_selection()
,
stat.glmnet_coefdiff()
,
stat.glmnet_lambdadiff()
,
stat.lasso_coefdiff_bin()
,
stat.lasso_coefdiff()
,
stat.lasso_lambdadiff_bin()
,
stat.random_forest()
,
stat.sqrt_lasso()
,
stat.stability_selection()
Examples
set.seed(2022)
p=200; n=100; k=15
mu = rep(0,p); Sigma = diag(p)
X = matrix(rnorm(n*p),n)
nonzero = sample(p, k)
beta = 3.5 * (1:p %in% nonzero)
y = X %*% beta + rnorm(n)
knockoffs = function(X) create.gaussian(X, mu, Sigma)
# Basic usage with default arguments
result = knockoff.filter(X, y, knockoffs=knockoffs,
statistic=stat.lasso_lambdadiff)
print(result$selected)
# Advanced usage with custom arguments
foo = stat.lasso_lambdadiff
k_stat = function(X, X_k, y) foo(X, X_k, y, nlambda=200)
result = knockoff.filter(X, y, knockoffs=knockoffs, statistic=k_stat)
print(result$selected)