stat.glmnet_lambdadiff {knockoff} | R Documentation |
Importance statistics based on a GLM
Description
Fits a generalized linear model via penalized maximum likelihood and computes the difference statistic
W_j = Z_j - \tilde{Z}_j
where Z_j
and \tilde{Z}_j
are the maximum values of the
regularization parameter \lambda
at which the jth variable
and its knockoff enter the model, respectively.
Usage
stat.glmnet_lambdadiff(X, X_k, y, family = "gaussian", ...)
Arguments
X |
n-by-p matrix of original variables. |
X_k |
n-by-p matrix of knockoff variables. |
y |
vector of length n, containing the response variables. Quantitative for family="gaussian", or family="poisson" (non-negative counts). For family="binomial" should be either a factor with two levels, or a two-column matrix of counts or proportions (the second column is treated as the target class; for a factor, the last level in alphabetical order is the target class). For family="multinomial", can be a nc>=2 level factor, or a matrix with nc columns of counts or proportions. For either "binomial" or "multinomial", if y is presented as a vector, it will be coerced into a factor. For family="cox", y should be a two-column matrix with columns named 'time' and 'status'. The latter is a binary variable, with '1' indicating death, and '0' indicating right censored. The function Surv() in package survival produces such a matrix. For family="mgaussian", y is a matrix of quantitative responses. |
family |
response type (see above). |
... |
additional arguments specific to |
Details
This function uses glmnet
to compute the regularization path
on a fine grid of \lambda
's.
The nlambda
parameter can be used to control the granularity of the
grid of \lambda
's. The default value of nlambda
is 500
.
If the family is 'binomial' and a lambda sequence is not provided by the user, this function generates it on a log-linear scale before calling 'glmnet'.
The default response family is 'gaussian', for a linear regression model. Different response families (e.g. 'binomial') can be specified by passing an optional parameter 'family'.
For a complete list of the available additional arguments, see glmnet
.
Value
A vector of statistics W
of length p.
See Also
Other statistics:
stat.forward_selection()
,
stat.glmnet_coefdiff()
,
stat.lasso_coefdiff_bin()
,
stat.lasso_coefdiff()
,
stat.lasso_lambdadiff_bin()
,
stat.lasso_lambdadiff()
,
stat.random_forest()
,
stat.sqrt_lasso()
,
stat.stability_selection()
Examples
set.seed(2022)
p=200; n=100; k=15
mu = rep(0,p); Sigma = diag(p)
X = matrix(rnorm(n*p),n)
nonzero = sample(p, k)
beta = 3.5 * (1:p %in% nonzero)
y = X %*% beta + rnorm(n)
knockoffs = function(X) create.gaussian(X, mu, Sigma)
# Basic usage with default arguments
result = knockoff.filter(X, y, knockoffs=knockoffs,
statistic=stat.glmnet_lambdadiff)
print(result$selected)
# Advanced usage with custom arguments
foo = stat.glmnet_lambdadiff
k_stat = function(X, X_k, y) foo(X, X_k, y, nlambda=200)
result = knockoff.filter(X, y, knockoffs=knockoffs, statistic=k_stat)
print(result$selected)