generateArtificialLongData {kml} | R Documentation |
~ Function: generateArtificialLongData (or gald) ~
Description
This function builp up an artificial longitudinal data set (single
variable-trajectory) an turn it
into an object of class ClusterLongData
.
Usage
gald(nbEachClusters=50,time=0:10,varNames="V",
meanTrajectories=list(function(t){0},function(t){t},
function(t){10-t},function(t){-0.4*t^2+4*t}),
personalVariation=function(t){rnorm(1,0,2)},
residualVariation=function(t){rnorm(1,0,2)},
decimal=2,percentOfMissing=0)
generateArtificialLongData(nbEachClusters=50,time=0:10,varNames="V",
meanTrajectories=list(function(t){0},function(t){t},
function(t){10-t},function(t){-0.4*t^2+4*t}),
personalVariation=function(t){rnorm(1,0,2)},
residualVariation=function(t){rnorm(1,0,2)},
decimal=2,percentOfMissing=0)
Arguments
nbEachClusters |
[numeric] or [vector(numeric)]: number of trajectories that each cluster must contain. If a single number is given, it is duplicated for all groups. |
time |
[vector(numeric)]: time at which measures are made. |
varNames |
[character]: name of the variable. |
meanTrajectories |
[list(function)]: lists the functions define the average trajectories of each cluster. |
personalVariation |
[function] or [list(function)]: lists the functions defining the personnal variation between an individual and the mean trajectories of its cluster. Note that these function should be constant function (the personal variation can not evolve with time). If a single function is given, it is duplicated for all groups (see detail). |
residualVariation |
[function] or [list(function)]: lists the functions generating the noise of each trajectory within its own cluster. If a single function is given, it is duplicated for all groups (see detail). |
decimal |
[numeric]: number of decimals used to round up values. |
percentOfMissing |
[numeric]: percentage (between 0 and 1) of missing data generated in each cluster. If a single value is given, it is duplicated for all groups. The missing values are Missing Completly At Random (MCAR). |
Details
generateArtificialLongData
(gald
in short) is a
function that contruct a set of artificial longitudinal data.
Each individual is considered as belonging to a group. This group
follows a theoretical trajectory, function of time. These functions (one per group) are given via the argument meanTrajectories
.
Within a group, the individual undergoes individal variations. Individual variations are given via the argument residualVariation
.
The number of individuals in each group is given by nbEachClusters
.
Finally, it is possible to add missing values randomly (MCAR) striking the
data thanks to percentOfMissing
.
Value
An object of class ClusterLongData
.
Author
Christophe Genolini
1. UMR U1027, INSERM, Université Paul Sabatier / Toulouse III / France
2. CeRSME, EA 2931, UFR STAPS, Université de Paris Ouest-Nanterre-La Défense / Nanterre / France
References
[1] C. Genolini and B. Falissard
"KmL: k-means for longitudinal data"
Computational Statistics, vol 25(2), pp 317-328, 2010
[2] C. Genolini and B. Falissard
"KmL: A package to cluster longitudinal data"
Computer Methods and Programs in Biomedicine, 104, pp e112-121, 2011
See Also
ClusterLongData
, clusterLongData
Examples
par(ask=TRUE)
#####################
### Default example
(ex1 <- generateArtificialLongData())
plot(ex1)
plot(ex1,parTraj=parTRAJ(col=rep(2:5,each=50)))
#####################
### Three diverging lines
ex2 <- generateArtificialLongData(meanTrajectories=list(function(t)0,function(t)-t,function(t)t))
plot(ex2,parTraj=parTRAJ(col=rep(2:4,each=50)))
#####################
### Three diverging lines with high variance, unbalance groups and missing value
ex3 <- generateArtificialLongData(
meanTrajectories=list(function(t)0,function(t)-t,function(t)t),
nbEachClusters=c(100,30,10),
residualVariation=function(t){rnorm(1,0,3)},
percentOfMissing=c(0.25,0.5,0.25)
)
part3 <- partition(rep(1:3,c(100,30,10)))
plot(ex3,parTraj=parTRAJ(col=rep(2:4,c(100,30,10))))
#####################
### Four strange functions
ex4 <- generateArtificialLongData(
nbEachClusters=c(300,200,100,100),
meanTrajectories=list(function(t){-10+2*t},function(t){-0.6*t^2+6*t-7.5},
function(t){10*sin(t)},function(t){30*dnorm(t,2,1.5)}),
residualVariation=function(t){rnorm(1,0,3)},
time=0:10,decimal=2,percentOfMissing=0.3)
plot(ex4,parTraj=parTRAJ(col=rep(2:5,c(300,200,100,100))))
#####################
### To get only longData (if you want some artificial longData
### to deal with another algorithm), use the getteur ["traj"]
ex5 <- gald(nbEachCluster=3,time=1:3)
ex5["traj"]
par(ask=FALSE)