clusterLongData {kml} | R Documentation |
~ Function: clusterLongData (or cld) ~
Description
clusterLongData
(or cld
in short) is the constructor
for ClusterLongData
object.
Usage
clusterLongData(traj, idAll, time, timeInData, varNames, maxNA)
cld(traj, idAll, time, timeInData, varNames, maxNA)
Arguments
traj |
|
idAll |
|
time |
|
timeInData |
|
varNames |
|
maxNA |
|
Details
clusterLongData
construct a object of class ClusterLongData
.
Two cases can be distinguised:
traj
is anarray
:lines are individual. Column are time of measurment.
If
idAll
is missing, the individuals are labelledi1
,i2
,i3
,...If
timeInData
is missing, all the column are used (timeInData=1:ncol(traj)
).- If
traj
is adata.frame
: lines are individual. Column are time of measurement.
If
idAll
is missing, then the first column of thedata.frame
is used foridAll
If
timeInData
is missing andidAll
is missing, then all the columns but the first are used fortimeInData
(the first is omited since it is already used foridAll
):idAll=traj[,1],timeInData=2:ncol(traj)
.If
timeInData
is missing butidAll
is not missing, then all the column including the first are used fortimeInData
:timeInData=1:ncol(traj)
.
Value
An object of class ClusterLongData
.
Author
Christophe Genolini
1. UMR U1027, INSERM, Université Paul Sabatier / Toulouse III / France
2. CeRSME, EA 2931, UFR STAPS, Université de Paris Ouest-Nanterre-La Défense / Nanterre / France
References
[1] C. Genolini and B. Falissard
"KmL: k-means for longitudinal data"
Computational Statistics, vol 25(2), pp 317-328, 2010
[2] C. Genolini and B. Falissard
"KmL: A package to cluster longitudinal data"
Computer Methods and Programs in Biomedicine, 104, pp e112-121, 2011
See Also
Overview: kml-package
Classes : ClusterLongData
Methods : choice
, kml
Plot : plot(ClusterLongData)
Examples
#####################
### From matrix
### Small data
mat <- matrix(c(1,NA,3,2,3,6,1,8,10),3,3,dimnames=list(c(101,102,104),c("T2","T4","T8")))
clusterLongData(mat)
(ld1 <- clusterLongData(traj=mat,idAll=as.character(c(101,102,104)),time=c(2,4,8),varNames="V"))
plot(ld1)
### Big data
mat <- matrix(runif(1051*325),1051,325)
(ld2 <- clusterLongData(traj=mat,idAll=paste("I-",1:1051,sep=""),time=(1:325)+0.5,varNames="R"))
####################
### From data.frame
dn <- data.frame(id=1:3,v1=c(NA,2,1),v2=c(NA,1,0),v3=c(3,2,2),v4=c(4,2,NA))
### Basic
clusterLongData(dn)
### Selecting some times
(ld3 <- clusterLongData(dn,timeInData=c(1,2,4),varNames=c("Hyp")))
### Excluding trajectories with more than 1 NA
(ld3 <- clusterLongData(dn,maxNA=1))