plotkmc2D {kmc} | R Documentation |
Plot the contour plot of log-likelihood around the H0 (dim=2).
Description
Given a kmc object, this function will produce contour plot if there were two constraints.
Usage
plotkmc2D(resultkmc, flist=list(f1=function(x){x}, f2=function(x){x^2}),
range0=c(0.2, 3,20))
Arguments
resultkmc |
S3 Object of kmcS3. |
flist |
list of two functions,flist=list( f1=function( x ) x ,f2=function( x ) x^2 ) |
range0 |
A vector that helps to determine the range of the contour plot, i.e (center[1]-range0[1], center[2]-range0[2]) to (center+range0[1], center[2]+range0[2]). The third parameter defines the number of grids would be used. |
Value
X |
x.grid |
Y |
y.grid |
Z |
grid value |
Author(s)
Yifan Yang(yfyang.86@hotmail.com)
Examples
x <- c( 1, 1.5, 2, 3, 4.2, 5.0, 6.1, 5.3, 4.5, 0.9, 2.1, 4.3)
d <- c( 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1)
f<-function( x) { x-3.7}
myfun5 <- function( x) {
x^2-16.5
}
# construnct g as a LIST!
g=list( f1=f,f2=myfun5) ;
kmc.solve( x,d,g) ->re0;
#plotkmc2D(re0) ->ZZ; # run this to generate contour plot
#Advanced PLOT option using ggplot2: not run
#library(reshape2)
#volcano3d <- melt(ZZ$Z)
#names(volcano3d) <- c("x", "y", "z")
#volcano3d$x <- ZZ$X[volcano3d$x];
#volcano3d$y <- ZZ$Y[volcano3d$y];
#### Plot: use ggplot2 ####
#library(ggplot2)
# v <- ggplot(volcano3d, aes(x, y, z=z));
# v + geom_tile(aes(fill = z)) +
# stat_contour()+
# scale_fill_gradientn("Custom Colours",colours=grey.colors(10));
#### Plot: use qplot ####
#qplot(x, y, z = z, data = volcano3d, stat = "contour", geom = "path")
[Package kmc version 0.4-2 Index]