kld_est_kde1 {kldest} | R Documentation |
1-D kernel density-based estimation of Kullback-Leibler divergence
Description
This estimation method approximates the densities of the unknown distributions
P
and Q
by a kernel density estimate using function 'density' from
package 'stats'. Only the two-sample, not the one-sample problem is implemented.
Usage
kld_est_kde1(X, Y, MC = FALSE, ...)
Arguments
X , Y |
Numeric vectors or single-column matrices, representing samples
from the true distribution |
MC |
A boolean: use a Monte Carlo approximation instead of numerical
integration via the trapezoidal rule (default: |
... |
Further parameters to passed on to |
Value
A scalar, the estimated Kullback-Leibler divergence \hat D_{KL}(P||Q)
.
Examples
# KL-D between two samples from 1D Gaussians:
set.seed(0)
X <- rnorm(100)
Y <- rnorm(100, mean = 1, sd = 2)
kld_gaussian(mu1 = 0, sigma1 = 1, mu2 = 1, sigma2 = 2^2)
kld_est_kde1(X,Y)
kld_est_kde1(X,Y, MC = TRUE)
[Package kldest version 1.0.0 Index]