utils_fit {kfino} | R Documentation |
utils_fit a fonction running the kfino algorithm to filter data and detect outliers under the knowledge of all parameters
Description
utils_fit a fonction running the kfino algorithm to filter data and detect outliers under the knowledge of all parameters
Usage
utils_fit(param, threshold, kappa = 10, Y, Tps, N)
Arguments
param |
list, see initial parameter list in |
threshold |
numeric, threshold for confidence interval, default 0.5 |
kappa |
numeric, truncation setting for likelihood optimization, default 10 |
Y |
character, name of the numeric variable to predict in the data.frame datain |
Tps |
character, time column name in the data.frame datain, a numeric vector. Tvar can be expressed as a proportion of day in seconds |
N |
numeric, length of the numeric vector of Y values |
Details
utils_fit is a tool function used in the main kfino_fit
function. It uses the same input parameter list than the main function.
Value
a list
- prediction
vector, the prediction of weights
- label
vector, probability to be an outlier
- likelihood
numeric, the calculated likelihood
- lwr
vector of lower bound confidence interval of the prediction
- upr
vector of upper bound confidence interval of the prediction
- flag
char, is an outlier or not
Examples
set.seed(1234)
Y<-rnorm(n=10,mean=50,4)
Tps<-seq(1,10)
N=10
param2<-list(m0=41,
mm=45,
pp=0.5,
aa=0.001,
expertMin=30,
expertMax=75,
sigma2_m0=1,
sigma2_mm=0.05,
sigma2_pp=5,
K=2,
seqp=seq(0.5,0.7,0.1))
print(Y)
utils_fit(param=param2,threshold=0.5,kappa=10,Y=Y,Tps=Tps,N=N)