kfino_plot {kfino} | R Documentation |
kfino_plot a graphical function for the result of a kfino run
Description
kfino_plot a graphical function for the result of a kfino run
Usage
kfino_plot(
resuin,
typeG,
Tvar,
Yvar,
Ident,
title = NULL,
labelX = NULL,
labelY = NULL
)
Arguments
resuin |
a list resulting of the kfino algorithm |
typeG |
char, type of graphic, either detection of outliers (with qualitative or quantitative display) or prediction. must be "quanti" or "quali" or "prediction" |
Tvar |
char, time variable in the data.frame datain |
Yvar |
char, variable which was analysed in the data.frame datain |
Ident |
char, column name of the individual id to be analyzed |
title |
char, a graph title |
labelX |
char, a label for x-axis |
labelY |
char, a label for y-axis |
Details
The produced graphic can be, according to typeG:
- quali
This plot shows the detection of outliers with a qualitative rule: OK values (black), KO values (outliers, purple) and OOR values (out of range values defined by the user in 'kfino_fit', red)
- quanti
This plot shows the detection of outliers with a quantitative display using the calculated probability of the kfino algorithm
- prediction
This plot shows the prediction of the analyzed variable plus the OK values. Prediction corresponds to E[X_t | Y_1...t] for each time point t. Between 2 time points, we used a simple linear interpolation.
Value
a ggplot2 graphic
Examples
data(spring1)
library(dplyr)
print(colnames(spring1))
# --- Without Optimisation on initial parameters
param2<-list(m0=41,
mm=45,
pp=0.5,
aa=0.001,
expertMin=30,
expertMax=75,
sigma2_m0=1,
sigma2_mm=0.05,
sigma2_pp=5,
K=2,
seqp=seq(0.5,0.7,0.1))
resu2<-kfino_fit(datain=spring1,
Tvar="dateNum",Yvar="Poids",
param=param2,
doOptim=FALSE)
# flags are qualitative
kfino_plot(resuin=resu2,typeG="quali",
Tvar="Day",Yvar="Poids",Ident="IDE",
title="kfino spring1",
labelX="Time (day)",labelY="Weight (kg)")
# flags are quantitative
kfino_plot(resuin=resu2,typeG="quanti",
Tvar="Day",Yvar="Poids",Ident="IDE")
# predictions on OK values
kfino_plot(resuin=resu2,typeG="prediction",
Tvar="Day",Yvar="Poids",Ident="IDE")