kfda {kfda} | R Documentation |
Kernel Fisher Discriminant Analysis (KFDA)
Description
Train the trainData using KFDA. Basically, we run KFDA using Gaussian kernel. Returns trained KFDA object.
Usage
kfda(trainData = data, kernel.name = "rbfdot", kpar.sigma = 0.001, threshold = 1e-05)
Arguments
trainData |
an optional |
kernel.name |
the kernel function used in training and predicting. This parameter is fixed in the |
kpar.sigma |
hyper-parameter of selected kernel. |
threshold |
the value of the eigenvalue under which principal components are ignored (only valid when features = 0). (default : 1e-05). |
Details
Train the trainData using KFDA. Basically, we run KFDA using Gaussian kernel. Returns trained KFDA object.
Since this function performs KFDA with the appropriate combination of kpca
and lda
, the following values can show the result of each function.
Value
An object of class kfda
.
kpca.train |
An object of class "kpca". It has results of |
lda.rotation.train |
The result of applying LDA, After KPCA is performed on trainData. |
LDs |
A dataframe of linear discriminants of LDA. |
label |
A vector of class label of trainData. |
Note
This package is an early version and will be updated in the future.
Author(s)
Donghwan Kim
ainsuotain@hanmail.net
donhkim9714@korea.ac.kr
dhkim2@bistel.com
References
Yang, J., Jin, Z., Yang, J. Y., Zhang, D., and Frangi, A. F. (2004) <DOI:10.1016/j.patcog.2003.10.015>. Essence of kernel Fisher discriminant: KPCA plus LDA. Pattern Recognition, 37(10): 2097-2100.
See Also
kpca
(in package kernlab)
lda
(in package MASS)
kfda.predict
Examples
# data input
data(iris)
# data separation
idx <- sample(1:dim(iris)[1], round(dim(iris)[1]*0.7))
trainData <- iris[idx, ]
# training KFDA model
kfda.model <- kfda(trainData = trainData, kernel.name = "rbfdot")
# structure of kfda.model
str(kfda.model)