keys-manipulate {keyholder} | R Documentation |
Manipulate keys
Description
Functions to manipulate keys.
Usage
remove_keys(.tbl, ..., .unkey = FALSE)
restore_keys(.tbl, ..., .remove = FALSE, .unkey = FALSE)
pull_key(.tbl, var)
rename_keys(.tbl, ...)
Arguments
.tbl |
Reference data frame. |
... |
Variables to be used for operations defined in similar fashion as
in |
.unkey |
Whether to |
.remove |
Whether to remove keys after restoring. |
var |
Parameter for |
Details
remove_keys()
removes keys defined with ...
.
restore_keys()
transfers keys defined with ...
into .tbl
and removes
them from keys
if .remove == TRUE
. If .tbl
is grouped the following
happens:
If restored keys don't contain grouping variables then groups don't change;
If restored keys contain grouping variables then result will be regrouped based on restored values. In other words restoring keys beats 'not-modifying' grouping variables rule. It is made according to the ideology of keys: they contain information about rows and by restoring you want it to be available.
pull_key()
extracts one specified column from keys with dplyr::pull()
.
rename_keys()
renames columns in keys using dplyr::rename()
.
See Also
Examples
df <- mtcars %>% dplyr::as_tibble() %>%
key_by(vs, am, .exclude = TRUE)
df %>% remove_keys(vs)
df %>% remove_keys(dplyr::everything())
df %>% remove_keys(dplyr::everything(), .unkey = TRUE)
df %>% restore_keys(vs)
df %>% restore_keys(vs, .remove = TRUE)
df %>% restore_keys(dplyr::everything(), .remove = TRUE)
df %>% restore_keys(dplyr::everything(), .remove = TRUE, .unkey = TRUE)
# Restoring on grouped data frame
df_grouped <- df %>% dplyr::mutate(vs = 1) %>% dplyr::group_by(vs)
df_grouped %>% restore_keys(dplyr::everything())
# Pulling
df %>% pull_key(vs)
# Renaming
df %>% rename_keys(Vs = vs)