HyperResNet {kerastuneR} | R Documentation |
HyperResNet
Description
A ResNet HyperModel.
Usage
HyperResNet(
include_top = TRUE,
input_shape = NULL,
input_tensor = NULL,
classes = NULL,
...
)
Arguments
include_top |
whether to include the fully-connected layer at the top of the network. |
input_shape |
Optional shape list, e.g. '(256, 256, 3)'. One of 'input_shape' or 'input_tensor' must be specified. |
input_tensor |
Optional Keras tensor (i.e. output of 'layers.Input()') to use as image input for the model. One of 'input_shape' or 'input_tensor' must be specified. |
classes |
optional number of classes to classify images into, only to be specified if 'include_top' is TRUE, and if no 'weights' argument is specified. **kwargs: Additional keyword arguments that apply to all HyperModels. See 'kerastuner.HyperModel'. |
... |
Additional keyword arguments that apply to all HyperModels. |
Value
a pre-trained ResNet model
Examples
## Not run:
cifar <- dataset_cifar10()
hypermodel = HyperResNet(input_shape = list(32L, 32L, 3L), classes = 10L)
hypermodel2 = HyperXception(input_shape = list(32L, 32L, 3L), classes = 10L)
tuner = Hyperband(
hypermodel = hypermodel,
objective = 'accuracy',
loss = 'sparse_categorical_crossentropy',
max_epochs = 1,
directory = 'my_dir',
project_name='helloworld')
train_data = cifar$train$x[1:30,1:32,1:32,1:3]
test_data = cifar$train$y[1:30,1] %>% as.matrix()
tuner %>% fit_tuner(train_data,test_data, epochs = 1)
## End(Not run)
[Package kerastuneR version 0.1.0.7 Index]