| to_categorical {keras3} | R Documentation | 
Converts a class vector (integers) to binary class matrix.
Description
E.g. for use with loss_categorical_crossentropy().
Usage
to_categorical(x, num_classes = NULL)
Arguments
| x | Array-like with class values to be converted into a matrix
(integers from 0 to  | 
| num_classes | Total number of classes. If  | 
Value
A binary matrix representation of the input as an R array. The class axis is placed last.
Examples
a <- to_categorical(c(0, 1, 2, 3), num_classes=4) print(a)
## [,1] [,2] [,3] [,4] ## [1,] 1 0 0 0 ## [2,] 0 1 0 0 ## [3,] 0 0 1 0 ## [4,] 0 0 0 1
b <- array(c(.9, .04, .03, .03,
              .3, .45, .15, .13,
              .04, .01, .94, .05,
              .12, .21, .5, .17),
              dim = c(4, 4))
loss <- op_categorical_crossentropy(a, b)
loss
## tf.Tensor([0.41284522 0.45601739 0.54430155 0.80437282], shape=(4), dtype=float64)
loss <- op_categorical_crossentropy(a, a) loss
## tf.Tensor([1.00000005e-07 1.00000005e-07 1.00000005e-07 1.00000005e-07], shape=(4), dtype=float64)
See Also
-  op_one_hot(), which does the same operation asto_categorical(), but operating on tensors.
-  loss_sparse_categorical_crossentropy(), which can accept labels (y_true) as an integer vector, instead of as a dense one-hot matrix.
-  https://keras.io/api/utils/python_utils#tocategorical-function 
Other numerical utils: 
normalize() 
Other utils: 
audio_dataset_from_directory() 
clear_session() 
config_disable_interactive_logging() 
config_disable_traceback_filtering() 
config_enable_interactive_logging() 
config_enable_traceback_filtering() 
config_is_interactive_logging_enabled() 
config_is_traceback_filtering_enabled() 
get_file() 
get_source_inputs() 
image_array_save() 
image_dataset_from_directory() 
image_from_array() 
image_load() 
image_smart_resize() 
image_to_array() 
layer_feature_space() 
normalize() 
pad_sequences() 
set_random_seed() 
split_dataset() 
text_dataset_from_directory() 
timeseries_dataset_from_array() 
zip_lists()