save_model_config {keras3} | R Documentation |
Save and load model configuration as JSON
Description
Save and re-load models configurations as JSON. Note that the representation does not include the weights, only the architecture.
Usage
save_model_config(model, filepath = NULL, overwrite = FALSE)
load_model_config(filepath, custom_objects = NULL)
Arguments
model |
Model object to save |
filepath |
path to json file with the model config. |
overwrite |
Whether we should overwrite any existing model configuration json
at |
custom_objects |
Optional named list mapping names to custom classes or functions to be considered during deserialization. |
Details
Note: save_model_config()
serializes the model to JSON using
serialize_keras_object()
, not get_config()
. serialize_keras_object()
returns a superset of get_config()
, with additional information needed to
create the class object needed to restore the model. See example for how to
extract the get_config()
value from a saved model.
Value
This is called primarily for side effects. model
is returned,
invisibly, to enable usage with the pipe.
Example
model <- keras_model_sequential(input_shape = 10) |> layer_dense(10) file <- tempfile("model-config-", fileext = ".json") save_model_config(model, file) # load a new model instance with the same architecture but different weights model2 <- load_model_config(file) stopifnot(exprs = { all.equal(get_config(model), get_config(model2)) # To extract the `get_config()` value from a saved model config: all.equal( get_config(model), structure(jsonlite::read_json(file)$config, "__class__" = keras_model_sequential()$`__class__`) ) })
See Also
Other saving and loading functions:
export_savedmodel.keras.src.models.model.Model()
layer_tfsm()
load_model()
load_model_weights()
register_keras_serializable()
save_model()
save_model_weights()
with_custom_object_scope()