optimizer_rmsprop {keras3} | R Documentation |
Optimizer that implements the RMSprop algorithm.
Description
The gist of RMSprop is to:
Maintain a moving (discounted) average of the square of gradients
Divide the gradient by the root of this average
This implementation of RMSprop uses plain momentum, not Nesterov momentum.
The centered version additionally maintains a moving average of the gradients, and uses that average to estimate the variance.
Usage
optimizer_rmsprop(
learning_rate = 0.001,
rho = 0.9,
momentum = 0,
epsilon = 1e-07,
centered = FALSE,
weight_decay = NULL,
clipnorm = NULL,
clipvalue = NULL,
global_clipnorm = NULL,
use_ema = FALSE,
ema_momentum = 0.99,
ema_overwrite_frequency = NULL,
name = "rmsprop",
...,
loss_scale_factor = NULL,
gradient_accumulation_steps = NULL
)
Arguments
learning_rate |
A float, a
|
rho |
float, defaults to 0.9. Discounting factor for the old gradients. |
momentum |
float, defaults to 0.0. If not 0.0., the optimizer tracks the
momentum value, with a decay rate equals to |
epsilon |
A small constant for numerical stability. This epsilon is "epsilon hat" in the Kingma and Ba paper (in the formula just before Section 2.1), not the epsilon in Algorithm 1 of the paper. Defaults to 1e-7. |
centered |
Boolean. If |
weight_decay |
Float. If set, weight decay is applied. |
clipnorm |
Float. If set, the gradient of each weight is individually clipped so that its norm is no higher than this value. |
clipvalue |
Float. If set, the gradient of each weight is clipped to be no higher than this value. |
global_clipnorm |
Float. If set, the gradient of all weights is clipped so that their global norm is no higher than this value. |
use_ema |
Boolean, defaults to |
ema_momentum |
Float, defaults to 0.99. Only used if |
ema_overwrite_frequency |
Int or NULL, defaults to NULL. Only used if
|
name |
String. The name to use for momentum accumulator weights created by the optimizer. |
... |
For forward/backward compatability. |
loss_scale_factor |
Float or |
gradient_accumulation_steps |
Int or |
Value
an Optimizer
instance
Usage
opt <- optimizer_rmsprop(learning_rate=0.1)
Reference
See Also
Other optimizers:
optimizer_adadelta()
optimizer_adafactor()
optimizer_adagrad()
optimizer_adam()
optimizer_adam_w()
optimizer_adamax()
optimizer_ftrl()
optimizer_lion()
optimizer_loss_scale()
optimizer_nadam()
optimizer_sgd()