op_conv {keras3}R Documentation

General N-D convolution.

Description

This ops supports 1D, 2D and 3D convolution.

Usage

op_conv(
  inputs,
  kernel,
  strides = 1L,
  padding = "valid",
  data_format = NULL,
  dilation_rate = 1L
)

Arguments

inputs

Tensor of rank N+2. inputs has shape ⁠(batch_size,) + inputs_spatial_shape + (num_channels,)⁠ if data_format = "channels_last", or ⁠(batch_size, num_channels) + inputs_spatial_shape⁠ if data_format = "channels_first".

kernel

Tensor of rank N+2. kernel has shape ⁠(kernel_spatial_shape, num_input_channels, num_output_channels)⁠. num_input_channels should match the number of channels in inputs.

strides

int or int tuple/list of len(inputs_spatial_shape), specifying the strides of the convolution along each spatial dimension. If strides is int, then every spatial dimension shares the same strides.

padding

string, either "valid" or "same". "valid" means no padding is applied, and "same" results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input when strides = 1.

data_format

A string, either "channels_last" or "channels_first". data_format determines the ordering of the dimensions in the inputs. If data_format = "channels_last", inputs is of shape ⁠(batch_size, ..., channels)⁠ while if data_format = "channels_first", inputs is of shape ⁠(batch_size, channels, ...)⁠.

dilation_rate

int or int tuple/list of len(inputs_spatial_shape), specifying the dilation rate to use for dilated convolution. If dilation_rate is int, then every spatial dimension shares the same dilation_rate.

Value

A tensor of rank N+2, the result of the conv operation.

See Also

Other nn ops:
op_average_pool()
op_batch_normalization()
op_binary_crossentropy()
op_categorical_crossentropy()
op_conv_transpose()
op_ctc_loss()
op_depthwise_conv()
op_elu()
op_gelu()
op_hard_sigmoid()
op_hard_silu()
op_leaky_relu()
op_log_sigmoid()
op_log_softmax()
op_max_pool()
op_moments()
op_multi_hot()
op_normalize()
op_one_hot()
op_psnr()
op_relu()
op_relu6()
op_selu()
op_separable_conv()
op_sigmoid()
op_silu()
op_softmax()
op_softplus()
op_softsign()
op_sparse_categorical_crossentropy()

Other ops:
op_abs()
op_add()
op_all()
op_any()
op_append()
op_arange()
op_arccos()
op_arccosh()
op_arcsin()
op_arcsinh()
op_arctan()
op_arctan2()
op_arctanh()
op_argmax()
op_argmin()
op_argpartition()
op_argsort()
op_array()
op_average()
op_average_pool()
op_batch_normalization()
op_binary_crossentropy()
op_bincount()
op_broadcast_to()
op_cast()
op_categorical_crossentropy()
op_ceil()
op_cholesky()
op_clip()
op_concatenate()
op_cond()
op_conj()
op_conv_transpose()
op_convert_to_numpy()
op_convert_to_tensor()
op_copy()
op_correlate()
op_cos()
op_cosh()
op_count_nonzero()
op_cross()
op_ctc_decode()
op_ctc_loss()
op_cumprod()
op_cumsum()
op_custom_gradient()
op_depthwise_conv()
op_det()
op_diag()
op_diagonal()
op_diff()
op_digitize()
op_divide()
op_divide_no_nan()
op_dot()
op_dtype()
op_eig()
op_eigh()
op_einsum()
op_elu()
op_empty()
op_equal()
op_erf()
op_erfinv()
op_exp()
op_expand_dims()
op_expm1()
op_extract_sequences()
op_eye()
op_fft()
op_fft2()
op_flip()
op_floor()
op_floor_divide()
op_fori_loop()
op_full()
op_full_like()
op_gelu()
op_get_item()
op_greater()
op_greater_equal()
op_hard_sigmoid()
op_hard_silu()
op_hstack()
op_identity()
op_imag()
op_image_affine_transform()
op_image_crop()
op_image_extract_patches()
op_image_hsv_to_rgb()
op_image_map_coordinates()
op_image_pad()
op_image_resize()
op_image_rgb_to_grayscale()
op_image_rgb_to_hsv()
op_in_top_k()
op_inv()
op_irfft()
op_is_tensor()
op_isclose()
op_isfinite()
op_isinf()
op_isnan()
op_istft()
op_leaky_relu()
op_less()
op_less_equal()
op_linspace()
op_log()
op_log10()
op_log1p()
op_log2()
op_log_sigmoid()
op_log_softmax()
op_logaddexp()
op_logical_and()
op_logical_not()
op_logical_or()
op_logical_xor()
op_logspace()
op_logsumexp()
op_lstsq()
op_lu_factor()
op_map()
op_matmul()
op_max()
op_max_pool()
op_maximum()
op_mean()
op_median()
op_meshgrid()
op_min()
op_minimum()
op_mod()
op_moments()
op_moveaxis()
op_multi_hot()
op_multiply()
op_nan_to_num()
op_ndim()
op_negative()
op_nonzero()
op_norm()
op_normalize()
op_not_equal()
op_one_hot()
op_ones()
op_ones_like()
op_outer()
op_pad()
op_power()
op_prod()
op_psnr()
op_qr()
op_quantile()
op_ravel()
op_real()
op_reciprocal()
op_relu()
op_relu6()
op_repeat()
op_reshape()
op_rfft()
op_roll()
op_round()
op_rsqrt()
op_scan()
op_scatter()
op_scatter_update()
op_segment_max()
op_segment_sum()
op_select()
op_selu()
op_separable_conv()
op_shape()
op_sigmoid()
op_sign()
op_silu()
op_sin()
op_sinh()
op_size()
op_slice()
op_slice_update()
op_slogdet()
op_softmax()
op_softplus()
op_softsign()
op_solve()
op_solve_triangular()
op_sort()
op_sparse_categorical_crossentropy()
op_split()
op_sqrt()
op_square()
op_squeeze()
op_stack()
op_std()
op_stft()
op_stop_gradient()
op_subtract()
op_sum()
op_svd()
op_swapaxes()
op_switch()
op_take()
op_take_along_axis()
op_tan()
op_tanh()
op_tensordot()
op_tile()
op_top_k()
op_trace()
op_transpose()
op_tri()
op_tril()
op_triu()
op_unstack()
op_var()
op_vdot()
op_vectorize()
op_vectorized_map()
op_vstack()
op_where()
op_while_loop()
op_zeros()
op_zeros_like()


[Package keras3 version 1.1.0 Index]