metric_sensitivity_at_specificity {keras3} | R Documentation |
Computes best sensitivity where specificity is >= specified value.
Description
Sensitivity
measures the proportion of actual positives that are correctly
identified as such (tp / (tp + fn))
.
Specificity
measures the proportion of actual negatives that are correctly
identified as such (tn / (tn + fp))
.
This metric creates four local variables, true_positives
,
true_negatives
, false_positives
and false_negatives
that are used to
compute the sensitivity at the given specificity. The threshold for the
given specificity value is computed and used to evaluate the corresponding
sensitivity.
If sample_weight
is NULL
, weights default to 1.
Use sample_weight
of 0 to mask values.
If class_id
is specified, we calculate precision by considering only the
entries in the batch for which class_id
is above the threshold
predictions, and computing the fraction of them for which class_id
is
indeed a correct label.
For additional information about specificity and sensitivity, see the following.
Usage
metric_sensitivity_at_specificity(
...,
specificity,
num_thresholds = 200L,
class_id = NULL,
name = NULL,
dtype = NULL
)
Arguments
... |
For forward/backward compatability. |
specificity |
A scalar value in range |
num_thresholds |
(Optional) Defaults to 200. The number of thresholds to use for matching the given specificity. |
class_id |
(Optional) Integer class ID for which we want binary metrics.
This must be in the half-open interval |
name |
(Optional) string name of the metric instance. |
dtype |
(Optional) data type of the metric result. |
Value
a Metric
instance is returned. The Metric
instance can be passed
directly to compile(metrics = )
, or used as a standalone object. See
?Metric
for example usage.
Usage
Standalone usage:
m <- metric_sensitivity_at_specificity(specificity = 0.5) m$update_state(c(0, 0, 0, 1, 1), c(0, 0.3, 0.8, 0.3, 0.8)) m$result()
## tf.Tensor(0.5, shape=(), dtype=float32)
m$reset_state() m$update_state(c(0, 0, 0, 1, 1), c(0, 0.3, 0.8, 0.3, 0.8), sample_weight = c(1, 1, 2, 2, 1)) m$result()
## tf.Tensor(0.33333334, shape=(), dtype=float32)
Usage with compile()
API:
model |> compile( optimizer = 'sgd', loss = 'binary_crossentropy', metrics = list(metric_sensitivity_at_specificity()) )
See Also
Other confusion metrics:
metric_auc()
metric_false_negatives()
metric_false_positives()
metric_precision()
metric_precision_at_recall()
metric_recall()
metric_recall_at_precision()
metric_specificity_at_sensitivity()
metric_true_negatives()
metric_true_positives()
Other metrics:
Metric()
custom_metric()
metric_auc()
metric_binary_accuracy()
metric_binary_crossentropy()
metric_binary_focal_crossentropy()
metric_binary_iou()
metric_categorical_accuracy()
metric_categorical_crossentropy()
metric_categorical_focal_crossentropy()
metric_categorical_hinge()
metric_cosine_similarity()
metric_f1_score()
metric_false_negatives()
metric_false_positives()
metric_fbeta_score()
metric_hinge()
metric_huber()
metric_iou()
metric_kl_divergence()
metric_log_cosh()
metric_log_cosh_error()
metric_mean()
metric_mean_absolute_error()
metric_mean_absolute_percentage_error()
metric_mean_iou()
metric_mean_squared_error()
metric_mean_squared_logarithmic_error()
metric_mean_wrapper()
metric_one_hot_iou()
metric_one_hot_mean_iou()
metric_poisson()
metric_precision()
metric_precision_at_recall()
metric_r2_score()
metric_recall()
metric_recall_at_precision()
metric_root_mean_squared_error()
metric_sparse_categorical_accuracy()
metric_sparse_categorical_crossentropy()
metric_sparse_top_k_categorical_accuracy()
metric_specificity_at_sensitivity()
metric_squared_hinge()
metric_sum()
metric_top_k_categorical_accuracy()
metric_true_negatives()
metric_true_positives()