metric_one_hot_mean_iou {keras3} | R Documentation |
Computes mean Intersection-Over-Union metric for one-hot encoded labels.
Description
Formula:
iou <- true_positives / (true_positives + false_positives + false_negatives)
Intersection-Over-Union is a common evaluation metric for semantic image segmentation.
To compute IoUs, the predictions are accumulated in a confusion matrix,
weighted by sample_weight
and the metric is then calculated from it.
If sample_weight
is NULL
, weights default to 1.
Use sample_weight
of 0 to mask values.
This class can be used to compute the mean IoU for multi-class
classification tasks where the labels are one-hot encoded (the last axis
should have one dimension per class). Note that the predictions should also
have the same shape. To compute the mean IoU, first the labels and
predictions are converted back into integer format by taking the argmax over
the class axis. Then the same computation steps as for the base MeanIoU
class apply.
Note, if there is only one channel in the labels and predictions, this class
is the same as class metric_mean_iou
. In this case, use metric_mean_iou
instead.
Also, make sure that num_classes
is equal to the number of classes in the
data, to avoid a "labels out of bound" error when the confusion matrix is
computed.
Usage
metric_one_hot_mean_iou(
...,
num_classes,
name = NULL,
dtype = NULL,
ignore_class = NULL,
sparse_y_pred = FALSE,
axis = -1L
)
Arguments
... |
For forward/backward compatability. |
num_classes |
The possible number of labels the prediction task can have. |
name |
(Optional) string name of the metric instance. |
dtype |
(Optional) data type of the metric result. |
ignore_class |
Optional integer. The ID of a class to be ignored during
metric computation. This is useful, for example, in segmentation
problems featuring a "void" class (commonly -1 or 255) in
segmentation maps. By default ( |
sparse_y_pred |
Whether predictions are encoded using natural numbers or
probability distribution vectors. If |
axis |
(Optional) The dimension containing the logits. Defaults to |
Value
a Metric
instance is returned. The Metric
instance can be passed
directly to compile(metrics = )
, or used as a standalone object. See
?Metric
for example usage.
Examples
Standalone usage:
y_true <- rbind(c(0, 0, 1), c(1, 0, 0), c(0, 1, 0), c(1, 0, 0)) y_pred <- rbind(c(0.2, 0.3, 0.5), c(0.1, 0.2, 0.7), c(0.5, 0.3, 0.1), c(0.1, 0.4, 0.5)) sample_weight <- c(0.1, 0.2, 0.3, 0.4) m <- metric_one_hot_mean_iou(num_classes = 3L) m$update_state( y_true = y_true, y_pred = y_pred, sample_weight = sample_weight) m$result()
## tf.Tensor(0.047619034, shape=(), dtype=float32)
Usage with compile()
API:
model %>% compile( optimizer = 'sgd', loss = 'mse', metrics = list(metric_one_hot_mean_iou(num_classes = 3L)))
See Also
Other iou metrics:
metric_binary_iou()
metric_iou()
metric_mean_iou()
metric_one_hot_iou()
Other metrics:
Metric()
custom_metric()
metric_auc()
metric_binary_accuracy()
metric_binary_crossentropy()
metric_binary_focal_crossentropy()
metric_binary_iou()
metric_categorical_accuracy()
metric_categorical_crossentropy()
metric_categorical_focal_crossentropy()
metric_categorical_hinge()
metric_cosine_similarity()
metric_f1_score()
metric_false_negatives()
metric_false_positives()
metric_fbeta_score()
metric_hinge()
metric_huber()
metric_iou()
metric_kl_divergence()
metric_log_cosh()
metric_log_cosh_error()
metric_mean()
metric_mean_absolute_error()
metric_mean_absolute_percentage_error()
metric_mean_iou()
metric_mean_squared_error()
metric_mean_squared_logarithmic_error()
metric_mean_wrapper()
metric_one_hot_iou()
metric_poisson()
metric_precision()
metric_precision_at_recall()
metric_r2_score()
metric_recall()
metric_recall_at_precision()
metric_root_mean_squared_error()
metric_sensitivity_at_specificity()
metric_sparse_categorical_accuracy()
metric_sparse_categorical_crossentropy()
metric_sparse_top_k_categorical_accuracy()
metric_specificity_at_sensitivity()
metric_squared_hinge()
metric_sum()
metric_top_k_categorical_accuracy()
metric_true_negatives()
metric_true_positives()