metric_false_positives {keras3} | R Documentation |
Calculates the number of false positives.
Description
If sample_weight
is given, calculates the sum of the weights of
false positives. This metric creates one local variable, accumulator
that is used to keep track of the number of false positives.
If sample_weight
is NULL
, weights default to 1.
Use sample_weight
of 0 to mask values.
Usage
metric_false_positives(..., thresholds = NULL, name = NULL, dtype = NULL)
Arguments
... |
For forward/backward compatability. |
thresholds |
(Optional) Defaults to |
name |
(Optional) string name of the metric instance. |
dtype |
(Optional) data type of the metric result. |
Value
a Metric
instance is returned. The Metric
instance can be passed
directly to compile(metrics = )
, or used as a standalone object. See
?Metric
for example usage.
Usage
Standalone usage:
m <- metric_false_positives() m$update_state(c(0, 1, 0, 0), c(0, 0, 1, 1)) m$result()
## tf.Tensor(2.0, shape=(), dtype=float32)
m$reset_state() m$update_state(c(0, 1, 0, 0), c(0, 0, 1, 1), sample_weight = c(0, 0, 1, 0)) m$result()
## tf.Tensor(1.0, shape=(), dtype=float32)
See Also
Other confusion metrics:
metric_auc()
metric_false_negatives()
metric_precision()
metric_precision_at_recall()
metric_recall()
metric_recall_at_precision()
metric_sensitivity_at_specificity()
metric_specificity_at_sensitivity()
metric_true_negatives()
metric_true_positives()
Other metrics:
Metric()
custom_metric()
metric_auc()
metric_binary_accuracy()
metric_binary_crossentropy()
metric_binary_focal_crossentropy()
metric_binary_iou()
metric_categorical_accuracy()
metric_categorical_crossentropy()
metric_categorical_focal_crossentropy()
metric_categorical_hinge()
metric_cosine_similarity()
metric_f1_score()
metric_false_negatives()
metric_fbeta_score()
metric_hinge()
metric_huber()
metric_iou()
metric_kl_divergence()
metric_log_cosh()
metric_log_cosh_error()
metric_mean()
metric_mean_absolute_error()
metric_mean_absolute_percentage_error()
metric_mean_iou()
metric_mean_squared_error()
metric_mean_squared_logarithmic_error()
metric_mean_wrapper()
metric_one_hot_iou()
metric_one_hot_mean_iou()
metric_poisson()
metric_precision()
metric_precision_at_recall()
metric_r2_score()
metric_recall()
metric_recall_at_precision()
metric_root_mean_squared_error()
metric_sensitivity_at_specificity()
metric_sparse_categorical_accuracy()
metric_sparse_categorical_crossentropy()
metric_sparse_top_k_categorical_accuracy()
metric_specificity_at_sensitivity()
metric_squared_hinge()
metric_sum()
metric_top_k_categorical_accuracy()
metric_true_negatives()
metric_true_positives()