| metric_false_positives {keras3} | R Documentation |
Calculates the number of false positives.
Description
If sample_weight is given, calculates the sum of the weights of
false positives. This metric creates one local variable, accumulator
that is used to keep track of the number of false positives.
If sample_weight is NULL, weights default to 1.
Use sample_weight of 0 to mask values.
Usage
metric_false_positives(..., thresholds = NULL, name = NULL, dtype = NULL)
Arguments
... |
For forward/backward compatability. |
thresholds |
(Optional) Defaults to |
name |
(Optional) string name of the metric instance. |
dtype |
(Optional) data type of the metric result. |
Value
a Metric instance is returned. The Metric instance can be passed
directly to compile(metrics = ), or used as a standalone object. See
?Metric for example usage.
Usage
Standalone usage:
m <- metric_false_positives() m$update_state(c(0, 1, 0, 0), c(0, 0, 1, 1)) m$result()
## tf.Tensor(2.0, shape=(), dtype=float32)
m$reset_state() m$update_state(c(0, 1, 0, 0), c(0, 0, 1, 1), sample_weight = c(0, 0, 1, 0)) m$result()
## tf.Tensor(1.0, shape=(), dtype=float32)
See Also
Other confusion metrics:
metric_auc()
metric_false_negatives()
metric_precision()
metric_precision_at_recall()
metric_recall()
metric_recall_at_precision()
metric_sensitivity_at_specificity()
metric_specificity_at_sensitivity()
metric_true_negatives()
metric_true_positives()
Other metrics:
Metric()
custom_metric()
metric_auc()
metric_binary_accuracy()
metric_binary_crossentropy()
metric_binary_focal_crossentropy()
metric_binary_iou()
metric_categorical_accuracy()
metric_categorical_crossentropy()
metric_categorical_focal_crossentropy()
metric_categorical_hinge()
metric_cosine_similarity()
metric_f1_score()
metric_false_negatives()
metric_fbeta_score()
metric_hinge()
metric_huber()
metric_iou()
metric_kl_divergence()
metric_log_cosh()
metric_log_cosh_error()
metric_mean()
metric_mean_absolute_error()
metric_mean_absolute_percentage_error()
metric_mean_iou()
metric_mean_squared_error()
metric_mean_squared_logarithmic_error()
metric_mean_wrapper()
metric_one_hot_iou()
metric_one_hot_mean_iou()
metric_poisson()
metric_precision()
metric_precision_at_recall()
metric_r2_score()
metric_recall()
metric_recall_at_precision()
metric_root_mean_squared_error()
metric_sensitivity_at_specificity()
metric_sparse_categorical_accuracy()
metric_sparse_categorical_crossentropy()
metric_sparse_top_k_categorical_accuracy()
metric_specificity_at_sensitivity()
metric_squared_hinge()
metric_sum()
metric_top_k_categorical_accuracy()
metric_true_negatives()
metric_true_positives()