loss_tversky {keras3} | R Documentation |
Computes the Tversky loss value between y_true
and y_pred
.
Description
This loss function is weighted by the alpha and beta coefficients that penalize false positives and false negatives.
With alpha=0.5
and beta=0.5
, the loss value becomes equivalent to
Dice Loss.
This loss function is weighted by the alpha and beta coefficients that penalize false positives and false negatives.
With alpha=0.5
and beta=0.5
, the loss value becomes equivalent to
Dice Loss.
Usage
loss_tversky(
y_true,
y_pred,
...,
alpha = 0.5,
beta = 0.5,
reduction = "sum_over_batch_size",
name = "tversky",
dtype = NULL
)
Arguments
y_true |
tensor of true targets. |
y_pred |
tensor of predicted targets. |
... |
For forward/backward compatability. |
alpha |
The coefficient controlling incidence of false positives.
Defaults to |
beta |
The coefficient controlling incidence of false negatives.
Defaults to |
reduction |
Type of reduction to apply to the loss. In almost all cases
this should be |
name |
Optional name for the loss instance. (string) |
dtype |
The dtype of the loss's computations. Defaults to |
Value
Tversky loss value.
Reference
See Also
Other losses:
Loss()
loss_binary_crossentropy()
loss_binary_focal_crossentropy()
loss_categorical_crossentropy()
loss_categorical_focal_crossentropy()
loss_categorical_hinge()
loss_cosine_similarity()
loss_ctc()
loss_dice()
loss_hinge()
loss_huber()
loss_kl_divergence()
loss_log_cosh()
loss_mean_absolute_error()
loss_mean_absolute_percentage_error()
loss_mean_squared_error()
loss_mean_squared_logarithmic_error()
loss_poisson()
loss_sparse_categorical_crossentropy()
loss_squared_hinge()
metric_binary_crossentropy()
metric_binary_focal_crossentropy()
metric_categorical_crossentropy()
metric_categorical_focal_crossentropy()
metric_categorical_hinge()
metric_hinge()
metric_huber()
metric_kl_divergence()
metric_log_cosh()
metric_mean_absolute_error()
metric_mean_absolute_percentage_error()
metric_mean_squared_error()
metric_mean_squared_logarithmic_error()
metric_poisson()
metric_sparse_categorical_crossentropy()
metric_squared_hinge()