| loss_squared_hinge {keras3} | R Documentation | 
Computes the squared hinge loss between y_true & y_pred.
Description
Formula:
loss <- square(maximum(1 - y_true * y_pred, 0))
y_true values are expected to be -1 or 1. If binary (0 or 1) labels are
provided we will convert them to -1 or 1.
Usage
loss_squared_hinge(
  y_true,
  y_pred,
  ...,
  reduction = "sum_over_batch_size",
  name = "squared_hinge",
  dtype = NULL
)
Arguments
| y_true | The ground truth values.  | 
| y_pred | The predicted values with shape =  | 
| ... | For forward/backward compatability. | 
| reduction | Type of reduction to apply to the loss. In almost all cases
this should be  | 
| name | Optional name for the loss instance. | 
| dtype | The dtype of the loss's computations. Defaults to  | 
Value
Squared hinge loss values with shape = [batch_size, d0, .. dN-1].
Examples
y_true <- array(sample(c(-1,1), 6, replace = TRUE), dim = c(2, 3)) y_pred <- random_uniform(c(2, 3)) loss <- loss_squared_hinge(y_true, y_pred)
See Also
Other losses: 
Loss() 
loss_binary_crossentropy() 
loss_binary_focal_crossentropy() 
loss_categorical_crossentropy() 
loss_categorical_focal_crossentropy() 
loss_categorical_hinge() 
loss_cosine_similarity() 
loss_ctc() 
loss_dice() 
loss_hinge() 
loss_huber() 
loss_kl_divergence() 
loss_log_cosh() 
loss_mean_absolute_error() 
loss_mean_absolute_percentage_error() 
loss_mean_squared_error() 
loss_mean_squared_logarithmic_error() 
loss_poisson() 
loss_sparse_categorical_crossentropy() 
loss_tversky() 
metric_binary_crossentropy() 
metric_binary_focal_crossentropy() 
metric_categorical_crossentropy() 
metric_categorical_focal_crossentropy() 
metric_categorical_hinge() 
metric_hinge() 
metric_huber() 
metric_kl_divergence() 
metric_log_cosh() 
metric_mean_absolute_error() 
metric_mean_absolute_percentage_error() 
metric_mean_squared_error() 
metric_mean_squared_logarithmic_error() 
metric_poisson() 
metric_sparse_categorical_crossentropy() 
metric_squared_hinge()