loss_squared_hinge {keras3} | R Documentation |
Computes the squared hinge loss between y_true
& y_pred
.
Description
Formula:
loss <- square(maximum(1 - y_true * y_pred, 0))
y_true
values are expected to be -1 or 1. If binary (0 or 1) labels are
provided we will convert them to -1 or 1.
Usage
loss_squared_hinge(
y_true,
y_pred,
...,
reduction = "sum_over_batch_size",
name = "squared_hinge",
dtype = NULL
)
Arguments
y_true |
The ground truth values. |
y_pred |
The predicted values with shape = |
... |
For forward/backward compatability. |
reduction |
Type of reduction to apply to the loss. In almost all cases
this should be |
name |
Optional name for the loss instance. |
dtype |
The dtype of the loss's computations. Defaults to |
Value
Squared hinge loss values with shape = [batch_size, d0, .. dN-1]
.
Examples
y_true <- array(sample(c(-1,1), 6, replace = TRUE), dim = c(2, 3)) y_pred <- random_uniform(c(2, 3)) loss <- loss_squared_hinge(y_true, y_pred)
See Also
Other losses:
Loss()
loss_binary_crossentropy()
loss_binary_focal_crossentropy()
loss_categorical_crossentropy()
loss_categorical_focal_crossentropy()
loss_categorical_hinge()
loss_cosine_similarity()
loss_ctc()
loss_dice()
loss_hinge()
loss_huber()
loss_kl_divergence()
loss_log_cosh()
loss_mean_absolute_error()
loss_mean_absolute_percentage_error()
loss_mean_squared_error()
loss_mean_squared_logarithmic_error()
loss_poisson()
loss_sparse_categorical_crossentropy()
loss_tversky()
metric_binary_crossentropy()
metric_binary_focal_crossentropy()
metric_categorical_crossentropy()
metric_categorical_focal_crossentropy()
metric_categorical_hinge()
metric_hinge()
metric_huber()
metric_kl_divergence()
metric_log_cosh()
metric_mean_absolute_error()
metric_mean_absolute_percentage_error()
metric_mean_squared_error()
metric_mean_squared_logarithmic_error()
metric_poisson()
metric_sparse_categorical_crossentropy()
metric_squared_hinge()