| loss_huber {keras3} | R Documentation | 
Computes the Huber loss between y_true & y_pred.
Description
Formula:
for (x in error) {
  if (abs(x) <= delta){
    loss <- c(loss, (0.5 * x^2))
  } else if (abs(x) > delta) {
    loss <- c(loss, (delta * abs(x) - 0.5 * delta^2))
  }
}
loss <- mean(loss)
See: Huber loss.
Usage
loss_huber(
  y_true,
  y_pred,
  delta = 1,
  ...,
  reduction = "sum_over_batch_size",
  name = "huber_loss",
  dtype = NULL
)
Arguments
| y_true | tensor of true targets. | 
| y_pred | tensor of predicted targets. | 
| delta | A float, the point where the Huber loss function changes from a
quadratic to linear. Defaults to  | 
| ... | For forward/backward compatability. | 
| reduction | Type of reduction to apply to loss. Options are  | 
| name | Optional name for the instance. | 
| dtype | The dtype of the loss's computations. Defaults to  | 
Value
Tensor with one scalar loss entry per sample.
Examples
y_true <- rbind(c(0, 1), c(0, 0)) y_pred <- rbind(c(0.6, 0.4), c(0.4, 0.6)) loss <- loss_huber(y_true, y_pred)
See Also
Other losses: 
Loss() 
loss_binary_crossentropy() 
loss_binary_focal_crossentropy() 
loss_categorical_crossentropy() 
loss_categorical_focal_crossentropy() 
loss_categorical_hinge() 
loss_cosine_similarity() 
loss_ctc() 
loss_dice() 
loss_hinge() 
loss_kl_divergence() 
loss_log_cosh() 
loss_mean_absolute_error() 
loss_mean_absolute_percentage_error() 
loss_mean_squared_error() 
loss_mean_squared_logarithmic_error() 
loss_poisson() 
loss_sparse_categorical_crossentropy() 
loss_squared_hinge() 
loss_tversky() 
metric_binary_crossentropy() 
metric_binary_focal_crossentropy() 
metric_categorical_crossentropy() 
metric_categorical_focal_crossentropy() 
metric_categorical_hinge() 
metric_hinge() 
metric_huber() 
metric_kl_divergence() 
metric_log_cosh() 
metric_mean_absolute_error() 
metric_mean_absolute_percentage_error() 
metric_mean_squared_error() 
metric_mean_squared_logarithmic_error() 
metric_poisson() 
metric_sparse_categorical_crossentropy() 
metric_squared_hinge()