loss_dice {keras3} | R Documentation |
Computes the Dice loss value between y_true
and y_pred
.
Description
Formula:
loss = 1 - (2 * sum(y_true * y_pred)) / (sum(y_true) + sum(y_pred))
Formula:
loss = 1 - (2 * sum(y_true * y_pred)) / (sum(y_true) + sum(y_pred))
Usage
loss_dice(
y_true,
y_pred,
...,
reduction = "sum_over_batch_size",
name = "dice",
axis = NULL,
dtype = NULL
)
Arguments
y_true |
Tensor of true targets. |
y_pred |
Tensor of predicted targets. |
... |
For forward/backward compatability. |
reduction |
Type of reduction to apply to the loss. In almost all cases
this should be |
name |
String, name for the object |
axis |
List of which dimensions the loss is calculated. Defaults to
|
dtype |
The dtype of the loss's computations. Defaults to |
Value
if y_true
and y_pred
are provided, Dice loss value. Otherwise,
a Loss()
instance.
Example
y_true <- array(c(1, 1, 0, 0, 1, 1, 0, 0), dim = c(2, 2, 2, 1)) y_pred <- array(c(0, 0.4, 0, 0, 1, 0, 1, 0.9), dim = c(2, 2, 2, 1)) axis <- c(2, 3, 4) loss <- loss_dice(y_true, y_pred, axis = axis) stopifnot(shape(loss) == shape(2)) loss
## tf.Tensor([0.50000001 0.75757576], shape=(2), dtype=float64)
loss = loss_dice(y_true, y_pred) stopifnot(shape(loss) == shape()) loss
## tf.Tensor(0.6164383614186526, shape=(), dtype=float64)
See Also
Other losses:
Loss()
loss_binary_crossentropy()
loss_binary_focal_crossentropy()
loss_categorical_crossentropy()
loss_categorical_focal_crossentropy()
loss_categorical_hinge()
loss_cosine_similarity()
loss_ctc()
loss_hinge()
loss_huber()
loss_kl_divergence()
loss_log_cosh()
loss_mean_absolute_error()
loss_mean_absolute_percentage_error()
loss_mean_squared_error()
loss_mean_squared_logarithmic_error()
loss_poisson()
loss_sparse_categorical_crossentropy()
loss_squared_hinge()
loss_tversky()
metric_binary_crossentropy()
metric_binary_focal_crossentropy()
metric_categorical_crossentropy()
metric_categorical_focal_crossentropy()
metric_categorical_hinge()
metric_hinge()
metric_huber()
metric_kl_divergence()
metric_log_cosh()
metric_mean_absolute_error()
metric_mean_absolute_percentage_error()
metric_mean_squared_error()
metric_mean_squared_logarithmic_error()
metric_poisson()
metric_sparse_categorical_crossentropy()
metric_squared_hinge()