loss_categorical_hinge {keras3} | R Documentation |
Computes the categorical hinge loss between y_true
& y_pred
.
Description
Formula:
loss <- maximum(neg - pos + 1, 0)
where neg=maximum((1-y_true)*y_pred)
and pos=sum(y_true*y_pred)
Usage
loss_categorical_hinge(
y_true,
y_pred,
...,
reduction = "sum_over_batch_size",
name = "categorical_hinge",
dtype = NULL
)
Arguments
y_true |
The ground truth values. |
y_pred |
The predicted values with shape = |
... |
For forward/backward compatability. |
reduction |
Type of reduction to apply to the loss. In almost all cases
this should be |
name |
Optional name for the loss instance. |
dtype |
The dtype of the loss's computations. Defaults to |
Value
Categorical hinge loss values with shape = [batch_size, d0, .. dN-1]
.
Examples
y_true <- rbind(c(0, 1), c(0, 0)) y_pred <- rbind(c(0.6, 0.4), c(0.4, 0.6)) loss <- loss_categorical_hinge(y_true, y_pred)
See Also
Other losses:
Loss()
loss_binary_crossentropy()
loss_binary_focal_crossentropy()
loss_categorical_crossentropy()
loss_categorical_focal_crossentropy()
loss_cosine_similarity()
loss_ctc()
loss_dice()
loss_hinge()
loss_huber()
loss_kl_divergence()
loss_log_cosh()
loss_mean_absolute_error()
loss_mean_absolute_percentage_error()
loss_mean_squared_error()
loss_mean_squared_logarithmic_error()
loss_poisson()
loss_sparse_categorical_crossentropy()
loss_squared_hinge()
loss_tversky()
metric_binary_crossentropy()
metric_binary_focal_crossentropy()
metric_categorical_crossentropy()
metric_categorical_focal_crossentropy()
metric_categorical_hinge()
metric_hinge()
metric_huber()
metric_kl_divergence()
metric_log_cosh()
metric_mean_absolute_error()
metric_mean_absolute_percentage_error()
metric_mean_squared_error()
metric_mean_squared_logarithmic_error()
metric_poisson()
metric_sparse_categorical_crossentropy()
metric_squared_hinge()