layer_torch_module_wrapper {keras3} | R Documentation |
Torch module wrapper layer.
Description
layer_torch_module_wrapper
is a wrapper class that can turn any
torch.nn.Module
into a Keras layer, in particular by making its
parameters trackable by Keras.
layer_torch_module_wrapper()
is only compatible with the PyTorch backend and
cannot be used with the TensorFlow or JAX backends.
Usage
layer_torch_module_wrapper(object, module, name = NULL, ...)
Arguments
object |
Object to compose the layer with. A tensor, array, or sequential model. |
module |
|
name |
The name of the layer (string). |
... |
For forward/backward compatability. |
Value
The return value depends on the value provided for the first argument.
If object
is:
a
keras_model_sequential()
, then the layer is added to the sequential model (which is modified in place). To enable piping, the sequential model is also returned, invisibly.a
keras_input()
, then the output tensor from callinglayer(input)
is returned.-
NULL
or missing, then aLayer
instance is returned.
Example
Here's an example of how the layer_torch_module_wrapper()
can be used with vanilla
PyTorch modules.
# reticulate::py_install( # packages = c("torch", "torchvision", "torchaudio"), # envname = "r-keras", # pip_options = c("--index-url https://download.pytorch.org/whl/cpu") # ) library(keras3) use_backend("torch") torch <- reticulate::import("torch") nn <- reticulate::import("torch.nn") nnf <- reticulate::import("torch.nn.functional") Classifier(keras$Model) \%py_class\% { initialize <- function(...) { super$initialize(...) self$conv1 <- layer_torch_module_wrapper(module = nn$Conv2d( in_channels = 1L, out_channels = 32L, kernel_size = tuple(3L, 3L) )) self$conv2 <- layer_torch_module_wrapper(module = nn$Conv2d( in_channels = 32L, out_channels = 64L, kernel_size = tuple(3L, 3L) )) self$pool <- nn$MaxPool2d(kernel_size = tuple(2L, 2L)) self$flatten <- nn$Flatten() self$dropout <- nn$Dropout(p = 0.5) self$fc <- layer_torch_module_wrapper(module = nn$Linear(1600L, 10L)) } call <- function(inputs) { x <- nnf$relu(self$conv1(inputs)) x <- self$pool(x) x <- nnf$relu(self$conv2(x)) x <- self$pool(x) x <- self$flatten(x) x <- self$dropout(x) x <- self$fc(x) nnf$softmax(x, dim = 1L) } } model <- Classifier() model$build(shape(1, 28, 28)) cat("Output shape:", format(shape(model(torch$ones(1L, 1L, 28L, 28L))))) model |> compile(loss = "sparse_categorical_crossentropy", optimizer = "adam", metrics = "accuracy")
model |> fit(train_loader, epochs = 5)
See Also
Other wrapping layers:
layer_flax_module_wrapper()
layer_jax_model_wrapper()
Other layers:
Layer()
layer_activation()
layer_activation_elu()
layer_activation_leaky_relu()
layer_activation_parametric_relu()
layer_activation_relu()
layer_activation_softmax()
layer_activity_regularization()
layer_add()
layer_additive_attention()
layer_alpha_dropout()
layer_attention()
layer_average()
layer_average_pooling_1d()
layer_average_pooling_2d()
layer_average_pooling_3d()
layer_batch_normalization()
layer_bidirectional()
layer_category_encoding()
layer_center_crop()
layer_concatenate()
layer_conv_1d()
layer_conv_1d_transpose()
layer_conv_2d()
layer_conv_2d_transpose()
layer_conv_3d()
layer_conv_3d_transpose()
layer_conv_lstm_1d()
layer_conv_lstm_2d()
layer_conv_lstm_3d()
layer_cropping_1d()
layer_cropping_2d()
layer_cropping_3d()
layer_dense()
layer_depthwise_conv_1d()
layer_depthwise_conv_2d()
layer_discretization()
layer_dot()
layer_dropout()
layer_einsum_dense()
layer_embedding()
layer_feature_space()
layer_flatten()
layer_flax_module_wrapper()
layer_gaussian_dropout()
layer_gaussian_noise()
layer_global_average_pooling_1d()
layer_global_average_pooling_2d()
layer_global_average_pooling_3d()
layer_global_max_pooling_1d()
layer_global_max_pooling_2d()
layer_global_max_pooling_3d()
layer_group_normalization()
layer_group_query_attention()
layer_gru()
layer_hashed_crossing()
layer_hashing()
layer_identity()
layer_integer_lookup()
layer_jax_model_wrapper()
layer_lambda()
layer_layer_normalization()
layer_lstm()
layer_masking()
layer_max_pooling_1d()
layer_max_pooling_2d()
layer_max_pooling_3d()
layer_maximum()
layer_mel_spectrogram()
layer_minimum()
layer_multi_head_attention()
layer_multiply()
layer_normalization()
layer_permute()
layer_random_brightness()
layer_random_contrast()
layer_random_crop()
layer_random_flip()
layer_random_rotation()
layer_random_translation()
layer_random_zoom()
layer_repeat_vector()
layer_rescaling()
layer_reshape()
layer_resizing()
layer_rnn()
layer_separable_conv_1d()
layer_separable_conv_2d()
layer_simple_rnn()
layer_spatial_dropout_1d()
layer_spatial_dropout_2d()
layer_spatial_dropout_3d()
layer_spectral_normalization()
layer_string_lookup()
layer_subtract()
layer_text_vectorization()
layer_tfsm()
layer_time_distributed()
layer_unit_normalization()
layer_upsampling_1d()
layer_upsampling_2d()
layer_upsampling_3d()
layer_zero_padding_1d()
layer_zero_padding_2d()
layer_zero_padding_3d()
rnn_cell_gru()
rnn_cell_lstm()
rnn_cell_simple()
rnn_cells_stack()