layer_spectral_normalization {keras3}R Documentation

Performs spectral normalization on the weights of a target layer.

Description

This wrapper controls the Lipschitz constant of the weights of a layer by constraining their spectral norm, which can stabilize the training of GANs.

Usage

layer_spectral_normalization(object, layer, power_iterations = 1L, ...)

Arguments

object

Object to compose the layer with. A tensor, array, or sequential model.

layer

A Layer instance that has either a kernel (e.g. layer_conv_2d, layer_dense...) or an embeddings attribute (layer_embedding layer).

power_iterations

int, the number of iterations during normalization.

...

Base wrapper keyword arguments.

Value

The return value depends on the value provided for the first argument. If object is:

Examples

Wrap layer_conv_2d:

x <- random_uniform(c(1, 10, 10, 1))
conv2d <- layer_spectral_normalization(
  layer = layer_conv_2d(filters = 2, kernel_size = 2)
)
y <- conv2d(x)
shape(y)
## shape(1, 9, 9, 2)

Wrap layer_dense:

x <- random_uniform(c(1, 10, 10, 1))
dense <- layer_spectral_normalization(layer = layer_dense(units = 10))
y <- dense(x)
shape(y)
## shape(1, 10, 10, 10)

Reference

See Also

Other normalization layers:
layer_batch_normalization()
layer_group_normalization()
layer_layer_normalization()
layer_unit_normalization()

Other layers:
Layer()
layer_activation()
layer_activation_elu()
layer_activation_leaky_relu()
layer_activation_parametric_relu()
layer_activation_relu()
layer_activation_softmax()
layer_activity_regularization()
layer_add()
layer_additive_attention()
layer_alpha_dropout()
layer_attention()
layer_average()
layer_average_pooling_1d()
layer_average_pooling_2d()
layer_average_pooling_3d()
layer_batch_normalization()
layer_bidirectional()
layer_category_encoding()
layer_center_crop()
layer_concatenate()
layer_conv_1d()
layer_conv_1d_transpose()
layer_conv_2d()
layer_conv_2d_transpose()
layer_conv_3d()
layer_conv_3d_transpose()
layer_conv_lstm_1d()
layer_conv_lstm_2d()
layer_conv_lstm_3d()
layer_cropping_1d()
layer_cropping_2d()
layer_cropping_3d()
layer_dense()
layer_depthwise_conv_1d()
layer_depthwise_conv_2d()
layer_discretization()
layer_dot()
layer_dropout()
layer_einsum_dense()
layer_embedding()
layer_feature_space()
layer_flatten()
layer_flax_module_wrapper()
layer_gaussian_dropout()
layer_gaussian_noise()
layer_global_average_pooling_1d()
layer_global_average_pooling_2d()
layer_global_average_pooling_3d()
layer_global_max_pooling_1d()
layer_global_max_pooling_2d()
layer_global_max_pooling_3d()
layer_group_normalization()
layer_group_query_attention()
layer_gru()
layer_hashed_crossing()
layer_hashing()
layer_identity()
layer_integer_lookup()
layer_jax_model_wrapper()
layer_lambda()
layer_layer_normalization()
layer_lstm()
layer_masking()
layer_max_pooling_1d()
layer_max_pooling_2d()
layer_max_pooling_3d()
layer_maximum()
layer_mel_spectrogram()
layer_minimum()
layer_multi_head_attention()
layer_multiply()
layer_normalization()
layer_permute()
layer_random_brightness()
layer_random_contrast()
layer_random_crop()
layer_random_flip()
layer_random_rotation()
layer_random_translation()
layer_random_zoom()
layer_repeat_vector()
layer_rescaling()
layer_reshape()
layer_resizing()
layer_rnn()
layer_separable_conv_1d()
layer_separable_conv_2d()
layer_simple_rnn()
layer_spatial_dropout_1d()
layer_spatial_dropout_2d()
layer_spatial_dropout_3d()
layer_string_lookup()
layer_subtract()
layer_text_vectorization()
layer_tfsm()
layer_time_distributed()
layer_torch_module_wrapper()
layer_unit_normalization()
layer_upsampling_1d()
layer_upsampling_2d()
layer_upsampling_3d()
layer_zero_padding_1d()
layer_zero_padding_2d()
layer_zero_padding_3d()
rnn_cell_gru()
rnn_cell_lstm()
rnn_cell_simple()
rnn_cells_stack()


[Package keras3 version 1.1.0 Index]