layer_simple_rnn {keras3} | R Documentation |
Fully-connected RNN where the output is to be fed back as the new input.
Description
Fully-connected RNN where the output is to be fed back as the new input.
Usage
layer_simple_rnn(
object,
units,
activation = "tanh",
use_bias = TRUE,
kernel_initializer = "glorot_uniform",
recurrent_initializer = "orthogonal",
bias_initializer = "zeros",
kernel_regularizer = NULL,
recurrent_regularizer = NULL,
bias_regularizer = NULL,
activity_regularizer = NULL,
kernel_constraint = NULL,
recurrent_constraint = NULL,
bias_constraint = NULL,
dropout = 0,
recurrent_dropout = 0,
return_sequences = FALSE,
return_state = FALSE,
go_backwards = FALSE,
stateful = FALSE,
unroll = FALSE,
seed = NULL,
...
)
Arguments
object |
Object to compose the layer with. A tensor, array, or sequential model. |
units |
Positive integer, dimensionality of the output space. |
activation |
Activation function to use.
Default: hyperbolic tangent ( |
use_bias |
Boolean, (default |
kernel_initializer |
Initializer for the |
recurrent_initializer |
Initializer for the |
bias_initializer |
Initializer for the bias vector. Default: |
kernel_regularizer |
Regularizer function applied to the |
recurrent_regularizer |
Regularizer function applied to the
|
bias_regularizer |
Regularizer function applied to the bias vector.
Default: |
activity_regularizer |
Regularizer function applied to the output of the
layer (its "activation"). Default: |
kernel_constraint |
Constraint function applied to the |
recurrent_constraint |
Constraint function applied to the
|
bias_constraint |
Constraint function applied to the bias vector.
Default: |
dropout |
Float between 0 and 1. Fraction of the units to drop for the linear transformation of the inputs. Default: 0. |
recurrent_dropout |
Float between 0 and 1. Fraction of the units to drop for the linear transformation of the recurrent state. Default: 0. |
return_sequences |
Boolean. Whether to return the last output
in the output sequence, or the full sequence. Default: |
return_state |
Boolean. Whether to return the last state
in addition to the output. Default: |
go_backwards |
Boolean (default: |
stateful |
Boolean (default: |
unroll |
Boolean (default: |
seed |
Initial seed for the random number generator |
... |
For forward/backward compatability. |
Value
The return value depends on the value provided for the first argument.
If object
is:
a
keras_model_sequential()
, then the layer is added to the sequential model (which is modified in place). To enable piping, the sequential model is also returned, invisibly.a
keras_input()
, then the output tensor from callinglayer(input)
is returned.-
NULL
or missing, then aLayer
instance is returned.
Call Arguments
-
sequence
: A 3D tensor, with shape[batch, timesteps, feature]
. -
mask
: Binary tensor of shape[batch, timesteps]
indicating whether a given timestep should be masked. An individualTRUE
entry indicates that the corresponding timestep should be utilized, while aFALSE
entry indicates that the corresponding timestep should be ignored. -
training
: Python boolean indicating whether the layer should behave in training mode or in inference mode. This argument is passed to the cell when calling it. This is only relevant ifdropout
orrecurrent_dropout
is used. -
initial_state
: List of initial state tensors to be passed to the first call of the cell.
Examples
inputs <- random_uniform(c(32, 10, 8)) simple_rnn <- layer_simple_rnn(units = 4) output <- simple_rnn(inputs) # The output has shape `(32, 4)`. simple_rnn <- layer_simple_rnn( units = 4, return_sequences=TRUE, return_state=TRUE ) # whole_sequence_output has shape `(32, 10, 4)`. # final_state has shape `(32, 4)`. c(whole_sequence_output, final_state) %<-% simple_rnn(inputs)
See Also
Other simple rnn layers:
rnn_cell_simple()
Other rnn layers:
layer_bidirectional()
layer_conv_lstm_1d()
layer_conv_lstm_2d()
layer_conv_lstm_3d()
layer_gru()
layer_lstm()
layer_rnn()
layer_time_distributed()
rnn_cell_gru()
rnn_cell_lstm()
rnn_cell_simple()
rnn_cells_stack()
Other layers:
Layer()
layer_activation()
layer_activation_elu()
layer_activation_leaky_relu()
layer_activation_parametric_relu()
layer_activation_relu()
layer_activation_softmax()
layer_activity_regularization()
layer_add()
layer_additive_attention()
layer_alpha_dropout()
layer_attention()
layer_average()
layer_average_pooling_1d()
layer_average_pooling_2d()
layer_average_pooling_3d()
layer_batch_normalization()
layer_bidirectional()
layer_category_encoding()
layer_center_crop()
layer_concatenate()
layer_conv_1d()
layer_conv_1d_transpose()
layer_conv_2d()
layer_conv_2d_transpose()
layer_conv_3d()
layer_conv_3d_transpose()
layer_conv_lstm_1d()
layer_conv_lstm_2d()
layer_conv_lstm_3d()
layer_cropping_1d()
layer_cropping_2d()
layer_cropping_3d()
layer_dense()
layer_depthwise_conv_1d()
layer_depthwise_conv_2d()
layer_discretization()
layer_dot()
layer_dropout()
layer_einsum_dense()
layer_embedding()
layer_feature_space()
layer_flatten()
layer_flax_module_wrapper()
layer_gaussian_dropout()
layer_gaussian_noise()
layer_global_average_pooling_1d()
layer_global_average_pooling_2d()
layer_global_average_pooling_3d()
layer_global_max_pooling_1d()
layer_global_max_pooling_2d()
layer_global_max_pooling_3d()
layer_group_normalization()
layer_group_query_attention()
layer_gru()
layer_hashed_crossing()
layer_hashing()
layer_identity()
layer_integer_lookup()
layer_jax_model_wrapper()
layer_lambda()
layer_layer_normalization()
layer_lstm()
layer_masking()
layer_max_pooling_1d()
layer_max_pooling_2d()
layer_max_pooling_3d()
layer_maximum()
layer_mel_spectrogram()
layer_minimum()
layer_multi_head_attention()
layer_multiply()
layer_normalization()
layer_permute()
layer_random_brightness()
layer_random_contrast()
layer_random_crop()
layer_random_flip()
layer_random_rotation()
layer_random_translation()
layer_random_zoom()
layer_repeat_vector()
layer_rescaling()
layer_reshape()
layer_resizing()
layer_rnn()
layer_separable_conv_1d()
layer_separable_conv_2d()
layer_spatial_dropout_1d()
layer_spatial_dropout_2d()
layer_spatial_dropout_3d()
layer_spectral_normalization()
layer_string_lookup()
layer_subtract()
layer_text_vectorization()
layer_tfsm()
layer_time_distributed()
layer_torch_module_wrapper()
layer_unit_normalization()
layer_upsampling_1d()
layer_upsampling_2d()
layer_upsampling_3d()
layer_zero_padding_1d()
layer_zero_padding_2d()
layer_zero_padding_3d()
rnn_cell_gru()
rnn_cell_lstm()
rnn_cell_simple()
rnn_cells_stack()