layer_separable_conv_1d {keras3} | R Documentation |
1D separable convolution layer.
Description
This layer performs a depthwise convolution that acts separately on
channels, followed by a pointwise convolution that mixes channels.
If use_bias
is TRUE and a bias initializer is provided,
it adds a bias vector to the output. It then optionally applies an
activation function to produce the final output.
Usage
layer_separable_conv_1d(
object,
filters,
kernel_size,
strides = 1L,
padding = "valid",
data_format = NULL,
dilation_rate = 1L,
depth_multiplier = 1L,
activation = NULL,
use_bias = TRUE,
depthwise_initializer = "glorot_uniform",
pointwise_initializer = "glorot_uniform",
bias_initializer = "zeros",
depthwise_regularizer = NULL,
pointwise_regularizer = NULL,
bias_regularizer = NULL,
activity_regularizer = NULL,
depthwise_constraint = NULL,
pointwise_constraint = NULL,
bias_constraint = NULL,
...
)
Arguments
object |
Object to compose the layer with. A tensor, array, or sequential model. |
filters |
int, the dimensionality of the output space (i.e. the number of filters in the pointwise convolution). |
kernel_size |
int or list of 1 integers, specifying the size of the depthwise convolution window. |
strides |
int or list of 1 integers, specifying the stride length
of the depthwise convolution. If only one int is specified, the same
stride size will be used for all dimensions. |
padding |
string, either |
data_format |
string, either |
dilation_rate |
int or list of 1 integers, specifying the dilation rate to use for dilated convolution. If only one int is specified, the same dilation rate will be used for all dimensions. |
depth_multiplier |
The number of depthwise convolution output channels
for each input channel. The total number of depthwise convolution
output channels will be equal to |
activation |
Activation function. If |
use_bias |
bool, if |
depthwise_initializer |
An initializer for the depthwise convolution
kernel. If NULL, then the default initializer ( |
pointwise_initializer |
An initializer for the pointwise convolution
kernel. If NULL, then the default initializer ( |
bias_initializer |
An initializer for the bias vector. If NULL, the default initializer ('"zeros"') will be used. |
depthwise_regularizer |
Optional regularizer for the depthwise convolution kernel. |
pointwise_regularizer |
Optional regularizer for the pointwise convolution kernel. |
bias_regularizer |
Optional regularizer for the bias vector. |
activity_regularizer |
Optional regularizer function for the output. |
depthwise_constraint |
Optional projection function to be applied to the
depthwise kernel after being updated by an |
pointwise_constraint |
Optional projection function to be applied to the
pointwise kernel after being updated by an |
bias_constraint |
Optional projection function to be applied to the
bias after being updated by an |
... |
For forward/backward compatability. |
Value
A 3D tensor representing
activation(separable_conv1d(inputs, kernel) + bias)
.
Input Shape
If
data_format="channels_last"
: A 3D tensor with shape:(batch_shape, steps, channels)
If
data_format="channels_first"
: A 3D tensor with shape:(batch_shape, channels, steps)
Output Shape
If
data_format="channels_last"
: A 3D tensor with shape:(batch_shape, new_steps, filters)
If
data_format="channels_first"
: A 3D tensor with shape:(batch_shape, filters, new_steps)
Example
x <- random_uniform(c(4, 10, 12)) y <- layer_separable_conv_1d(x, 3, 2, 2, activation='relu') shape(y)
## shape(4, 5, 3)
See Also
Other convolutional layers:
layer_conv_1d()
layer_conv_1d_transpose()
layer_conv_2d()
layer_conv_2d_transpose()
layer_conv_3d()
layer_conv_3d_transpose()
layer_depthwise_conv_1d()
layer_depthwise_conv_2d()
layer_separable_conv_2d()
Other layers:
Layer()
layer_activation()
layer_activation_elu()
layer_activation_leaky_relu()
layer_activation_parametric_relu()
layer_activation_relu()
layer_activation_softmax()
layer_activity_regularization()
layer_add()
layer_additive_attention()
layer_alpha_dropout()
layer_attention()
layer_average()
layer_average_pooling_1d()
layer_average_pooling_2d()
layer_average_pooling_3d()
layer_batch_normalization()
layer_bidirectional()
layer_category_encoding()
layer_center_crop()
layer_concatenate()
layer_conv_1d()
layer_conv_1d_transpose()
layer_conv_2d()
layer_conv_2d_transpose()
layer_conv_3d()
layer_conv_3d_transpose()
layer_conv_lstm_1d()
layer_conv_lstm_2d()
layer_conv_lstm_3d()
layer_cropping_1d()
layer_cropping_2d()
layer_cropping_3d()
layer_dense()
layer_depthwise_conv_1d()
layer_depthwise_conv_2d()
layer_discretization()
layer_dot()
layer_dropout()
layer_einsum_dense()
layer_embedding()
layer_feature_space()
layer_flatten()
layer_flax_module_wrapper()
layer_gaussian_dropout()
layer_gaussian_noise()
layer_global_average_pooling_1d()
layer_global_average_pooling_2d()
layer_global_average_pooling_3d()
layer_global_max_pooling_1d()
layer_global_max_pooling_2d()
layer_global_max_pooling_3d()
layer_group_normalization()
layer_group_query_attention()
layer_gru()
layer_hashed_crossing()
layer_hashing()
layer_identity()
layer_integer_lookup()
layer_jax_model_wrapper()
layer_lambda()
layer_layer_normalization()
layer_lstm()
layer_masking()
layer_max_pooling_1d()
layer_max_pooling_2d()
layer_max_pooling_3d()
layer_maximum()
layer_mel_spectrogram()
layer_minimum()
layer_multi_head_attention()
layer_multiply()
layer_normalization()
layer_permute()
layer_random_brightness()
layer_random_contrast()
layer_random_crop()
layer_random_flip()
layer_random_rotation()
layer_random_translation()
layer_random_zoom()
layer_repeat_vector()
layer_rescaling()
layer_reshape()
layer_resizing()
layer_rnn()
layer_separable_conv_2d()
layer_simple_rnn()
layer_spatial_dropout_1d()
layer_spatial_dropout_2d()
layer_spatial_dropout_3d()
layer_spectral_normalization()
layer_string_lookup()
layer_subtract()
layer_text_vectorization()
layer_tfsm()
layer_time_distributed()
layer_torch_module_wrapper()
layer_unit_normalization()
layer_upsampling_1d()
layer_upsampling_2d()
layer_upsampling_3d()
layer_zero_padding_1d()
layer_zero_padding_2d()
layer_zero_padding_3d()
rnn_cell_gru()
rnn_cell_lstm()
rnn_cell_simple()
rnn_cells_stack()