layer_rnn {keras3} | R Documentation |
Base class for recurrent layers
Description
Base class for recurrent layers
Usage
layer_rnn(
object,
cell,
return_sequences = FALSE,
return_state = FALSE,
go_backwards = FALSE,
stateful = FALSE,
unroll = FALSE,
zero_output_for_mask = FALSE,
...
)
Arguments
object |
Object to compose the layer with. A tensor, array, or sequential model. |
cell |
A RNN cell instance or a list of RNN cell instances. A RNN cell is a class that has:
|
return_sequences |
Boolean (default |
return_state |
Boolean (default |
go_backwards |
Boolean (default |
stateful |
Boolean (default |
unroll |
Boolean (default |
zero_output_for_mask |
Boolean (default |
... |
For forward/backward compatability. |
Value
The return value depends on the value provided for the first argument.
If object
is:
a
keras_model_sequential()
, then the layer is added to the sequential model (which is modified in place). To enable piping, the sequential model is also returned, invisibly.a
keras_input()
, then the output tensor from callinglayer(input)
is returned.-
NULL
or missing, then aLayer
instance is returned.
Call Arguments
-
inputs
: Input tensor. -
initial_state
: List of initial state tensors to be passed to the first call of the cell. -
mask
: Binary tensor of shape[batch_size, timesteps]
indicating whether a given timestep should be masked. An individualTRUE
entry indicates that the corresponding timestep should be utilized, while aFALSE
entry indicates that the corresponding timestep should be ignored. -
training
: Python boolean indicating whether the layer should behave in training mode or in inference mode. This argument is passed to the cell when calling it. This is for use with cells that use dropout.
Input Shape
3-D tensor with shape (batch_size, timesteps, features)
.
Output Shape
If
return_state
: a list of tensors. The first tensor is the output. The remaining tensors are the last states, each with shape(batch_size, state_size)
, wherestate_size
could be a high dimension tensor shape.If
return_sequences
: 3D tensor with shape(batch_size, timesteps, output_size)
.
Masking:
This layer supports masking for input data with a variable number
of timesteps. To introduce masks to your data,
use a layer_embedding()
layer with the mask_zero
parameter
set to TRUE
.
Note on using statefulness in RNNs:
You can set RNN layers to be 'stateful', which means that the states computed for the samples in one batch will be reused as initial states for the samples in the next batch. This assumes a one-to-one mapping between samples in different successive batches.
To enable statefulness:
Specify
stateful = TRUE
in the layer constructor.Specify a fixed batch size for your model, by passing
If sequential model:
input_batch_shape = c(...)
to thekeras_model_sequential()
call.Else for functional model with 1 or more input layers:
batch_shape = c(...)
to thelayer_input()
call(s).
This is the expected shape of your inputs including the batch size. It should be a list of integers, e.g.
c(32, 10, 100)
.Specify
shuffle = FALSE
when callingfit()
.
To reset the states of your model, call reset_state()
on either
a specific layer, or on your entire model.
Note on specifying the initial state of RNNs:
You can specify the initial state of RNN layers symbolically by
calling them with the keyword argument initial_state
. The value of
initial_state
should be a tensor or list of tensors representing
the initial state of the RNN layer.
Examples
First, let's define a RNN Cell, as a layer subclass.
rnn_cell_minimal <- Layer( "MinimalRNNCell", initialize = function(units, ...) { super$initialize(...) self$units <- as.integer(units) self$state_size <- as.integer(units) }, build = function(input_shape) { self$kernel <- self$add_weight( shape = shape(tail(input_shape, 1), self$units), initializer = 'uniform', name = 'kernel' ) self$recurrent_kernel <- self$add_weight( shape = shape(self$units, self$units), initializer = 'uniform', name = 'recurrent_kernel' ) self$built <- TRUE }, call = function(inputs, states) { prev_output <- states[[1]] h <- op_matmul(inputs, self$kernel) output <- h + op_matmul(prev_output, self$recurrent_kernel) list(output, list(output)) } )
Let's use this cell in a RNN layer:
cell <- rnn_cell_minimal(units = 32) x <- layer_input(shape = shape(NULL, 5)) layer <- layer_rnn(cell = cell) y <- layer(x)
cells <- list(rnn_cell_minimal(units = 32), rnn_cell_minimal(units = 4)) x <- layer_input(shape = shape(NULL, 5)) layer <- layer_rnn(cell = cells) y <- layer(x)
See Also
Other rnn cells:
rnn_cell_gru()
rnn_cell_lstm()
rnn_cell_simple()
Other rnn layers:
layer_bidirectional()
layer_conv_lstm_1d()
layer_conv_lstm_2d()
layer_conv_lstm_3d()
layer_gru()
layer_lstm()
layer_simple_rnn()
layer_time_distributed()
rnn_cell_gru()
rnn_cell_lstm()
rnn_cell_simple()
rnn_cells_stack()
Other layers:
Layer()
layer_activation()
layer_activation_elu()
layer_activation_leaky_relu()
layer_activation_parametric_relu()
layer_activation_relu()
layer_activation_softmax()
layer_activity_regularization()
layer_add()
layer_additive_attention()
layer_alpha_dropout()
layer_attention()
layer_average()
layer_average_pooling_1d()
layer_average_pooling_2d()
layer_average_pooling_3d()
layer_batch_normalization()
layer_bidirectional()
layer_category_encoding()
layer_center_crop()
layer_concatenate()
layer_conv_1d()
layer_conv_1d_transpose()
layer_conv_2d()
layer_conv_2d_transpose()
layer_conv_3d()
layer_conv_3d_transpose()
layer_conv_lstm_1d()
layer_conv_lstm_2d()
layer_conv_lstm_3d()
layer_cropping_1d()
layer_cropping_2d()
layer_cropping_3d()
layer_dense()
layer_depthwise_conv_1d()
layer_depthwise_conv_2d()
layer_discretization()
layer_dot()
layer_dropout()
layer_einsum_dense()
layer_embedding()
layer_feature_space()
layer_flatten()
layer_flax_module_wrapper()
layer_gaussian_dropout()
layer_gaussian_noise()
layer_global_average_pooling_1d()
layer_global_average_pooling_2d()
layer_global_average_pooling_3d()
layer_global_max_pooling_1d()
layer_global_max_pooling_2d()
layer_global_max_pooling_3d()
layer_group_normalization()
layer_group_query_attention()
layer_gru()
layer_hashed_crossing()
layer_hashing()
layer_identity()
layer_integer_lookup()
layer_jax_model_wrapper()
layer_lambda()
layer_layer_normalization()
layer_lstm()
layer_masking()
layer_max_pooling_1d()
layer_max_pooling_2d()
layer_max_pooling_3d()
layer_maximum()
layer_mel_spectrogram()
layer_minimum()
layer_multi_head_attention()
layer_multiply()
layer_normalization()
layer_permute()
layer_random_brightness()
layer_random_contrast()
layer_random_crop()
layer_random_flip()
layer_random_rotation()
layer_random_translation()
layer_random_zoom()
layer_repeat_vector()
layer_rescaling()
layer_reshape()
layer_resizing()
layer_separable_conv_1d()
layer_separable_conv_2d()
layer_simple_rnn()
layer_spatial_dropout_1d()
layer_spatial_dropout_2d()
layer_spatial_dropout_3d()
layer_spectral_normalization()
layer_string_lookup()
layer_subtract()
layer_text_vectorization()
layer_tfsm()
layer_time_distributed()
layer_torch_module_wrapper()
layer_unit_normalization()
layer_upsampling_1d()
layer_upsampling_2d()
layer_upsampling_3d()
layer_zero_padding_1d()
layer_zero_padding_2d()
layer_zero_padding_3d()
rnn_cell_gru()
rnn_cell_lstm()
rnn_cell_simple()
rnn_cells_stack()