layer_random_zoom {keras3} | R Documentation |
A preprocessing layer which randomly zooms images during training.
Description
This layer will randomly zoom in or out on each axis of an image
independently, filling empty space according to fill_mode
.
Input pixel values can be of any range (e.g. [0., 1.)
or [0, 255]
) and
of integer or floating point dtype.
By default, the layer will output floats.
Usage
layer_random_zoom(
object,
height_factor,
width_factor = NULL,
fill_mode = "reflect",
interpolation = "bilinear",
seed = NULL,
fill_value = 0,
data_format = NULL,
...
)
Arguments
object |
Object to compose the layer with. A tensor, array, or sequential model. |
height_factor |
a float represented as fraction of value, or a list of
size 2 representing lower and upper bound for zooming vertically.
When represented as a single float, this value is used for both the
upper and lower bound. A positive value means zooming out, while a
negative value means zooming in. For instance,
|
width_factor |
a float represented as fraction of value, or a list of
size 2 representing lower and upper bound for zooming horizontally.
When represented as a single float, this value is used for both the
upper and lower bound. For instance, |
fill_mode |
Points outside the boundaries of the input are filled
according to the given mode. Available methods are
|
interpolation |
Interpolation mode. Supported values: |
seed |
Integer. Used to create a random seed. |
fill_value |
a float that represents the value to be filled outside
the boundaries when |
data_format |
string, either |
... |
Base layer keyword arguments, such as |
Value
The return value depends on the value provided for the first argument.
If object
is:
a
keras_model_sequential()
, then the layer is added to the sequential model (which is modified in place). To enable piping, the sequential model is also returned, invisibly.a
keras_input()
, then the output tensor from callinglayer(input)
is returned.-
NULL
or missing, then aLayer
instance is returned.
Input Shape
3D (unbatched) or 4D (batched) tensor with shape:
(..., height, width, channels)
, in "channels_last"
format,
or (..., channels, height, width)
, in "channels_first"
format.
Output Shape
3D (unbatched) or 4D (batched) tensor with shape:
(..., target_height, target_width, channels)
,
or (..., channels, target_height, target_width)
,
in "channels_first"
format.
Note: This layer is safe to use inside a tf.data
pipeline
(independently of which backend you're using).
Examples
input_img <- random_uniform(c(32, 224, 224, 3)) layer <- layer_random_zoom(height_factor = .5, width_factor = .2) out_img <- layer(input_img)
See Also
Other image augmentation layers:
layer_random_brightness()
layer_random_contrast()
layer_random_crop()
layer_random_flip()
layer_random_rotation()
layer_random_translation()
Other preprocessing layers:
layer_category_encoding()
layer_center_crop()
layer_discretization()
layer_feature_space()
layer_hashed_crossing()
layer_hashing()
layer_integer_lookup()
layer_mel_spectrogram()
layer_normalization()
layer_random_brightness()
layer_random_contrast()
layer_random_crop()
layer_random_flip()
layer_random_rotation()
layer_random_translation()
layer_rescaling()
layer_resizing()
layer_string_lookup()
layer_text_vectorization()
Other layers:
Layer()
layer_activation()
layer_activation_elu()
layer_activation_leaky_relu()
layer_activation_parametric_relu()
layer_activation_relu()
layer_activation_softmax()
layer_activity_regularization()
layer_add()
layer_additive_attention()
layer_alpha_dropout()
layer_attention()
layer_average()
layer_average_pooling_1d()
layer_average_pooling_2d()
layer_average_pooling_3d()
layer_batch_normalization()
layer_bidirectional()
layer_category_encoding()
layer_center_crop()
layer_concatenate()
layer_conv_1d()
layer_conv_1d_transpose()
layer_conv_2d()
layer_conv_2d_transpose()
layer_conv_3d()
layer_conv_3d_transpose()
layer_conv_lstm_1d()
layer_conv_lstm_2d()
layer_conv_lstm_3d()
layer_cropping_1d()
layer_cropping_2d()
layer_cropping_3d()
layer_dense()
layer_depthwise_conv_1d()
layer_depthwise_conv_2d()
layer_discretization()
layer_dot()
layer_dropout()
layer_einsum_dense()
layer_embedding()
layer_feature_space()
layer_flatten()
layer_flax_module_wrapper()
layer_gaussian_dropout()
layer_gaussian_noise()
layer_global_average_pooling_1d()
layer_global_average_pooling_2d()
layer_global_average_pooling_3d()
layer_global_max_pooling_1d()
layer_global_max_pooling_2d()
layer_global_max_pooling_3d()
layer_group_normalization()
layer_group_query_attention()
layer_gru()
layer_hashed_crossing()
layer_hashing()
layer_identity()
layer_integer_lookup()
layer_jax_model_wrapper()
layer_lambda()
layer_layer_normalization()
layer_lstm()
layer_masking()
layer_max_pooling_1d()
layer_max_pooling_2d()
layer_max_pooling_3d()
layer_maximum()
layer_mel_spectrogram()
layer_minimum()
layer_multi_head_attention()
layer_multiply()
layer_normalization()
layer_permute()
layer_random_brightness()
layer_random_contrast()
layer_random_crop()
layer_random_flip()
layer_random_rotation()
layer_random_translation()
layer_repeat_vector()
layer_rescaling()
layer_reshape()
layer_resizing()
layer_rnn()
layer_separable_conv_1d()
layer_separable_conv_2d()
layer_simple_rnn()
layer_spatial_dropout_1d()
layer_spatial_dropout_2d()
layer_spatial_dropout_3d()
layer_spectral_normalization()
layer_string_lookup()
layer_subtract()
layer_text_vectorization()
layer_tfsm()
layer_time_distributed()
layer_torch_module_wrapper()
layer_unit_normalization()
layer_upsampling_1d()
layer_upsampling_2d()
layer_upsampling_3d()
layer_zero_padding_1d()
layer_zero_padding_2d()
layer_zero_padding_3d()
rnn_cell_gru()
rnn_cell_lstm()
rnn_cell_simple()
rnn_cells_stack()